Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.
more »
« less
Black Emotions Matter: Understanding the Impact of Racial Oppression on Black Youth’s Emotional Development: Dismantling Systems of Racism and Oppression During Adolescence
- Award ID(s):
- 2046607
- PAR ID:
- 10333394
- Date Published:
- Journal Name:
- Journal of Research on Adolescence
- Volume:
- 32
- Issue:
- 1
- ISSN:
- 1050-8392
- Page Range / eLocation ID:
- 13 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Dynamical interactions involving binaries play a crucial role in the evolution of star clusters and galaxies. We continue our investigation of the hydrodynamics of three-body encounters, focusing on binary black hole (BBH) formation, stellar disruption, and electromagnetic (EM) emission in dynamical interactions between a BH-star binary and a stellar-mass BH, using the moving-mesh hydrodynamics code AREPO. This type of encounters can be divided into two classes depending on whether the final outcome includes BBHs. This outcome is primarily determined by which two objects meet at the first closest approach. BBHs are more likely to form when the star and the incoming BH encounter first with an impact parameter smaller than the binary’s semimajor axis. In this case, the star is frequently disrupted. On the other hand, when the two BHs encounter first, frequent consequences are an orbit perturbation of the original binary or a binary member exchange. For the parameters chosen in this study, BBH formation, accompanied by stellar disruption, happens in roughly one out of four encounters. The close correlation between BBH formation and stellar disruption has possible implications for EM counterparts at the binary’s merger. The BH that disrupts the star is promptly surrounded by an optically and geometrically thick disc with accretion rates exceeding the Eddington limit. If the debris disc cools fast enough to become long-lived, EM counterparts can be produced at the time of the BBH merger.more » « less
-
We study electromagnetic and gravitational properties of anti–de Seitter (AdS) black shells (also referred to as AdS black bubbles)—a class of quantum gravity motivated black hole mimickers, that in the classical limit are described as ultracompact shells of matter. We find that their electromagnetic properties are remarkably similar to black holes. We then discuss the extent to which these objects are distinguishable from black holes, both for intrinsic interest within the black shell model, and as a guide for similar efforts in other subclasses of exotic compact objects (ECOs). We study photon rings and lensing band characteristics, relevant for very large baseline interferometry (VLBI) observations, as well as gravitational wave observables—quasinormal modes in the eikonal limit and the static tidal Love number for nonspinning shells—relevant for ongoing and upcoming gravitational wave observations. Published by the American Physical Society2025more » « less
An official website of the United States government

