skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Exploring black hole mimickers: Electromagnetic and gravitational signatures of AdS black shells
We study electromagnetic and gravitational properties of anti–de Seitter (AdS) black shells (also referred to as AdS black bubbles)—a class of quantum gravity motivated black hole mimickers, that in the classical limit are described as ultracompact shells of matter. We find that their electromagnetic properties are remarkably similar to black holes. We then discuss the extent to which these objects are distinguishable from black holes, both for intrinsic interest within the black shell model, and as a guide for similar efforts in other subclasses of exotic compact objects (ECOs). We study photon rings and lensing band characteristics, relevant for very large baseline interferometry (VLBI) observations, as well as gravitational wave observables—quasinormal modes in the eikonal limit and the static tidal Love number for nonspinning shells—relevant for ongoing and upcoming gravitational wave observations. Published by the American Physical Society2025  more » « less
Award ID(s):
2207286
PAR ID:
10589170
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
2
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data with precise control over the properties of the systems under consideration. Here, we augment the extended conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar Gauss-Bonnet theory and numerically implement it in the open-source p code. Despite the resulting elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes, we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the scalar hair near the black holes can be markedly altered by the presence of the other black hole. The initial data constructed here enable targeted simulations in scalar Gauss-Bonnet simulations with reduced initial transients. Published by the American Physical Society2025 
    more » « less
  2. Sunlike stars can transmute into comparable mass black holes by steadily accumulating heavy nonannihilating dark matter particles over the course of their lives. If such stars form in binary systems, they could give rise to quasi-monochromatic, persistent gravitational waves, commonly known as continuous gravitational waves, as they inspiral toward one another. We demonstrate that next-generation space-based detectors, e.g., Laser Interferometer Space Antenna (LISA) and Big Bang Observer (BBO), can provide novel constraints on dark matter parameters (dark matter mass and its interaction cross-section with the nucleons) by probing gravitational waves from transmuted sunlike stars that are in close binaries. Our projected constraints depend on several astrophysical uncertainties and nevertheless are competitive with the existing constraints obtained from cosmological measurements as well as terrestrial direct searches, demonstrating a notable science case for these space-based gravitational wave detectors as probes of particle dark matter. Published by the American Physical Society2024 
    more » « less
  3. Under the AdS / CFT correspondence, asymptotically anti–de Sitter geometries with backreaction can be viewed as conformal field theory states subject to a renormalization group (RG) flow from an ultraviolet (UV) description toward an infrared (IR) sector. For black holes, however, the IR point is the horizon, so one way to interpret the interior is as an analytic continuation to a “trans-IR” imaginary-energy regime. In this paper, we demonstrate that this analytic continuation preserves some imprints of the UV physics, particularly near its “end point” at the classical singularity. We focus on holographic phase transitions of geometric objects in round black holes. We first assert the consistency of interpreting such black holes, including their interiors, as RG flows by constructing a monotonic a function. We then explore how UV phase transitions of entanglement entropy and scalar two-point functions, each of which are encoded by bulk geometry under the holographic mapping, are related to the structure of the near-singularity geometry, which is quantified by Kasner exponents. Using 2D holographic flows triggered by relevant scalar deformations as test beds, we find that the 3D bulk’s near-singularity Kasner exponents can be viewed as functions of the UV physics precisely when the deformation is nonzero. Published by the American Physical Society2024 
    more » « less
  4. The detection of gravitational waves resulting from the coalescence of binary black holes by the LIGO-Virgo-Kagra Collaboration has inaugurated a new era in gravitational physics. These gravitational waves provide a unique opportunity to test Einstein’s general relativity and its modifications in the regime of extreme gravity. A significant aspect of such tests involves the study of the ringdown phase of gravitational waves from binary black hole coalescence, which can be decomposed into a superposition of various quasinormal modes. In general relativity, the spectra of quasinormal modes depend on the mass, spin, and charge of the final black hole, but they can also be influenced by additional properties of the black hole spacetime, as well as corrections to the general theory of relativity. In this work, we focus on a specific modified theory known as dynamical Chern-Simons gravity. We employ the modified Teukolsky formalism developed in a previous study and lay down the foundations to investigate perturbations of slowly rotating black holes admitted by the theory. Specifically, we derive the master equations for the Ψ 0 and Ψ 4 Weyl scalar perturbations that characterize the radiative part of gravitational perturbations, as well as the master equation for the scalar field perturbations. We employ metric reconstruction techniques to obtain explicit expressions for all relevant quantities. Finally, by leveraging the properties of spin-weighted spheroidal harmonics to eliminate the angular dependence from the evolution equations, we derive two, radial, second-order, ordinary differential equations for Ψ 0 and Ψ 4 , respectively. These two equations are coupled to another radial, second-order, ordinary differential equation for the scalar field perturbations. This work is the first attempt to derive a master equation for black holes in dynamical Chern-Simons gravity using curvature perturbations. The master equations we obtain can then be numerically integrated to obtain the quasinormal mode spectrum of slowly rotating black holes in this theory, making progress in the study of ringdown in dynamical Chern-Simons gravity. Published by the American Physical Society2024 
    more » « less
  5. We investigate various properties of extremal dyonic static black holes in Einstein-Maxwell-Dilaton-Axion theory. We obtain a simple first-order ordinary differential equation for the black hole mass in terms of its electric and magnetic charges, which we can solve explicitly for certain special values of the scalar couplings. For one such case we also construct new dyonic black hole solutions, making use of the presence of an enhanced S L ( 2 , R ) symmetry. Finally, we investigate the structure of long range forces and binding energies between nonequivalent extremal black holes. For certain special cases, we can identify regions of parameter space where the force is always attractive or repulsive. Unlike in the case without an axion, the force and binding energies between distinct black holes are not always correlated with each other. Our work is motivated in part by the question of whether long range forces between nonidentical states can potentially encode information about UV constraints on low-energy physics. Published by the American Physical Society2025 
    more » « less