Abstract Increases in global meat demands cannot be sustainably met with current methods of livestock farming, which has a substantial impact on greenhouse gas emissions, land use, water consumption, and farm animal welfare. Cultivated meat is a rapidly advancing technology that produces meat products by proliferating and differentiating animal stem cells in large bioreactors, avoiding conventional live‐animal farming. While many companies are working in this area, there is a lack of existing infrastructure and experience at commercial scale, resulting in many technical bottlenecks such as scale‐up of cell culture and media availability and costs. In this study, we evaluate theoretical cultivated beef production facilities with the goal of envisioning an industry with multiple facilities to produce in total 100,000,000 kg of cultured beef per year or ~0.14% of the annual global beef production. Using the computer‐aided process design software, SuperPro Designer®, facilities are modeled to create a comprehensive analysis to highlight improvements that can lower the cost of such a production system and allow cultivated meat products to be competitive. Three facility scenarios are presented with different sized production reactors; ~42,000 L stirred tank bioreactor (STR) with a base case cost of goods sold (COGS) of $35/kg, ~211,000 L STR with a COGS of $25/kg, and ~262,000 L airlift reactor (ALR) with a COGS of $17/kg. This study outlines how advances in scaled up bioreactors, alternative bioreactor designs, and decreased media costs are necessary for commercialization of cultured meat products.
more »
« less
Private costs of carbon emissions abatement by limiting beef consumption and vehicle use in the United States
A popular strategy for mitigating climate change is to persuade or incentivize individuals to limit behaviors associated with high greenhouse gas emissions. In this study, adults in the mid-Atlantic United States bid in an auction to receive compensation for eliminating beef consumption or limiting vehicle use. The auction incentivized participants to reveal their true costs of accepting these limits for periods ranging from one week to one year. Compliance with the conditions of the auction was confirmed via a random field audit of the behavioral changes. The estimated median abatement costs were greater than $600 per tCO2e for beef consumption and $1,300 per tCO2e for vehicle use, values much higher than the price of carbon offsets and most estimates of the social cost of carbon. Although these values may decline over time with experience or broader social adoption, they imply that policies that encourage innovations to reduce the costs of behavior change, such as meat alternatives or emission-free vehicles, may be a more fruitful than those that limit beef consumption or vehicle use.
more »
« less
- Award ID(s):
- 1757353
- PAR ID:
- 10333426
- Editor(s):
- Caracciolo, Francesco
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0261372
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our study evaluated the effectiveness of using eight pathways in combination for a complete to transition from fossil fuels to renewable energy by 2050. These pathways included renewable energy development; improving energy efficiency; increasing energy conservation; carbon taxes; more equitable balancing of human wellbeing and per capita energy use; cap and trade systems; carbon capture, utilization, and storage; and nuclear power development. We used the annual ‘British Petroleum statistical review of world energy 2021’ report as our primary database. Globally, fossil fuels, renewable (primarily hydro, wind and solar), nuclear energy accounted for 83%, 12.6%, and 6.3% of the total energy consumption in 2020. To achieve zero fossil fuel use by 2050, we found that renewable energy production will need to be increased by up to 6-fold or 8-fold if energy demand is held constant at, or increased 50% from, the 2020 energy demand level. Constraining 2050 world energy demand to a 25% increase over the 2020 level, improves the probability of achieving independence from fossil fuels. Improvements in energy efficiency need to accelerate beyond the current rate of ~1.5% per year. Aggressive application of energy conservation policies involving land use and taxation could potentially reduce world energy use by 10% or more by 2050. Our meta-analysis shows that the minimum level of per capita energy consumption that would allow 8 billion people to have a ‘Decent Living Standard’ is on average ~70 GJ per capita per year, which is 93% of the 2020 global average. Developed countries in temperate climates with high vehicle-dependency needed ~120 GJ per capita year−1, whereas equatorial countries with low vehicle-dependency needed 30 GJ per capita year−1. Our meta-analyses indicated replacement of fossil fuels with renewable energy by 2050 may be possible but will require aggressive application of all eight pathways, major lifestyle changes in developed countries, and close cooperation among all countries.more » « less
-
The effects of climate change on natural systems will be substantial, widespread, and likely irreversible. Warmer temperatures and changing precipitation patterns have already contributed to forest dieback and pushed some species toward extinction. Natural systems contribute to human welfare both as an input to the production of consumption goods and through the provision of nonuse values (i.e., existence and bequest values). But because they are often unpriced, it can be difficult to constrain these benefits. Understanding how climate change effects on the natural capital stock affect human well-being, and therefore the social cost of carbon (SCC), requires understanding not just the biophysical effects of climate change but also the particular role they play in supporting human welfare. This article reviews a range of topics from natural capital accounting through climate change economics important for quantifying the ecological costs of climate change and integrating these costs into SCC calculations. Expected final online publication date for the Annual Review of Resource Economics, Volume 14 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
CONTEXT: The southwestern United States is experiencing an increasingly warmer and drier climate that is affecting cattle production systems of the region. Adaptation strategies are needed that will not compromise environmental quality or profitability. Options include the use of desert-adapted beef cattle biotypes, such as Rarámuri Criollo cattle, and crossbreds of Criollo with more traditional British breeds. Currently, most calves raised in the Southwest are grain finished, often with irrigated crops produced in the hydrologically-threatened Ogallala Aquifer region. A viable alternative may be grass finishing with the rainfed forage of the arid and semi-arid rangeland of the Southwest or in the temperate grasslands of the Northern Plains. OBJECTIVE: Compare the environmental impacts and production costs of grain-finishing in Texas and grass-finishing in the Northern plains and the Southwest with traditional Angus cattle vs. Criollo and Criollo x Angus cattle. METHODS: Nine supply chain strategies were simulated using the Integrated Farm System Model to compare farm-gate life cycle intensities of greenhouse gas emissions (carbon footprint), fossil energy footprint, nitrogen footprint, blue water footprint and production costs using representative (appropriate soils, climate, and management) ranch and feedlot operations. RESULTS AND CONCLUSIONS: For both finishing options (grass, grain), Criollo x Angus cattle had the best environmental (3%-27% lower), and production cost (4-23% lower) outcomes followed by pure Criollo and then Angus cattle. Crossbred production combined the lower feed supplementation requirements of Criollo cows with heavier final carcasses of offspring from Angus genetics. Crossbred cattle with grass finishing in the Southwest or Northern Plains outperformed on most environmental variables as well as production costs, mostly due to reduced external input requirements (primarily feed). A downside for grass-finished crossbreds was greater carbon footprint (27-42% higher) compared to grain finishing due to greater methane emissions from high forage diets and an extended time to finish. On grasslands where soil C sequestration can be supported, that land-based sequestration may offset the greater greenhouse gas emission from enteric methane of grass-finished beef. Grass finishing in the Northern Plains may provide a more reliable meat supply chain than grass finishing in the Southwest due to the lower risk and less severe consequences of drought. SIGNIFICANCE: Alternative beef supply chain options using Rarámuri Criollo cattle were found to be sustainable production systems that can be adopted by ranchers in the southwestern United States to adapt to the changing climate.more » « less
-
Abstract Beef production systems are at the center of ongoing discussion and debate on food systems sustainability. There is a growing interest among beef producers, consumers, and other beef supply chain stakeholders in achieving greater sustainability within the industry, but the relationship of this interest to general sustainability issues such as climate change, biodiversity loss, food security, livelihood risks, and animal welfare concerns is unclear. Specifically, there is very little research documenting how beef producers define and view the concept of sustainability and how to achieve it. Producer perspectives are critical to identifying constraints to sustainability transitions or to help build agreement with other producers about the shared values such transitions may support. Through a secondary analysis of survey data of U.S. beef producers (n = 911) conducted in 2021 by the Trust in Food division of Farm Journal, a corporation that provides content, data, and business insights to the agricultural community (e.g., producers, processors/distributors, and retailers), we investigated what “sustainable beef” means to U.S. beef producers, highlighting the key components and constraints they perceive to achieving desirable sustainability outcomes. Leveraging the three-pillar model of sustainability as a framework for analysis, we identified key themes producers use to define “sustainable beef.” We found that producers collectively viewed sustainability as: (1) multidimensional and interconnected; (2) semi-closed and regenerative; (3) long-lasting; and (4) producer-centered, although an integrated perspective uniting these aspects was rare. We discuss how these perspectives may be the basis for sustainability efforts supported by producers and raise future research considerations toward a shared understanding of what sustainability is and what is needed for enduring sustainability solutions in the U.S. beef industry.more » « less
An official website of the United States government

