skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate Impacts on Natural Capital: Consequences for the Social Cost of Carbon
The effects of climate change on natural systems will be substantial, widespread, and likely irreversible. Warmer temperatures and changing precipitation patterns have already contributed to forest dieback and pushed some species toward extinction. Natural systems contribute to human welfare both as an input to the production of consumption goods and through the provision of nonuse values (i.e., existence and bequest values). But because they are often unpriced, it can be difficult to constrain these benefits. Understanding how climate change effects on the natural capital stock affect human well-being, and therefore the social cost of carbon (SCC), requires understanding not just the biophysical effects of climate change but also the particular role they play in supporting human welfare. This article reviews a range of topics from natural capital accounting through climate change economics important for quantifying the ecological costs of climate change and integrating these costs into SCC calculations. Expected final online publication date for the Annual Review of Resource Economics, Volume 14 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1924378
PAR ID:
10349608
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Resource Economics
Volume:
14
Issue:
1
ISSN:
1941-1340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ecosystems generate a wide range of benefits for humans, including some market goods as well as other benefits that are not directly reflected in market activity1. Climate change will alter the distribution of ecosystems around the world and change the flow of these benefits2,3. However, the specific implications of ecosystem changes for human welfare remain unclear, as they depend on the nature of these changes, the value of the affected benefits and the extent to which communities rely on natural systems for their well-being4. Here we estimate country-level changes in economic production and the value of non-market ecosystem benefits resulting from climate-change-induced shifts in terrestrial vegetation cover, as projected by dynamic global vegetation models (DGVMs) driven by general circulation climate models. Our results show that the annual population-weighted mean global flow of non-market ecosystem benefits valued in the wealth accounts of the World Bank will be reduced by 9.2% in 2100 under the Shared Socioeconomic Pathway SSP2-6.0 with respect to the baseline no climate change scenario and that the global population-weighted average change in gross domestic product (GDP) by 2100 is −1.3% of the baseline GDP. Because lower-income countries are more reliant on natural capital, these GDP effects are regressive. Approximately 90% of these damages are borne by the poorest 50% of countries and regions, whereas the wealthiest 10% experience only 2% of these losses. 
    more » « less
  2. Sea‐level rise sits at the frontier of usable climate climate change research, because it involves natural and human systems with long lags, irreversible losses, and deep uncertainty. For example, many of the measures to adapt to sea‐level rise involve infrastructure and land‐use decisions, which can have multigenerational lifetimes and will further influence responses in both natural and human systems. Thus, sea‐level science has increasingly grappled with the implications of (1) deep uncertainty in future climate system projections, particularly of human emissions and ice sheet dynamics; (2) the overlay of slow trends and high‐frequency variability (e.g., tides and storms) that give rise to many of the most relevant impacts; (3) the effects of changing sea level on the physical exposure and vulnerability of ecological and socioeconomic systems; and (4) the challenges of engaging stakeholder communities with the scientific process in a way that genuinely increases the utility of the science for adaptation decision making. Much fundamental climate system research remains to be done, but many of the most critical issues sit at the intersection of natural sciences, social sciences, engineering, decision science, and political economy. Addressing these issues demands a better understanding of the coupled interactions of mean and extreme sea levels, coastal geomorphology, economics, and migration; decision‐first approaches that identify and focus research upon those scientific uncertainties most relevant to concrete adaptation choices; and a political economy that allows usable science to become used science. 
    more » « less
  3. Abstract There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy (ORE) developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g. bottom temperature), biological (e.g. net primary production) indicators and anthropogenic marine use (i.e. fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to ORE deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare. 
    more » « less
  4. Abstract Local food systems can have economic and social benefits by providing income for producers and improving community connections. Ongoing global climate change and the acute COVID-19 pandemic crisis have shown the importance of building equity and resilience in local food systems. We interviewed ten stakeholders from organizations and institutions in a U.S. midwestern city exploring views on past, current, and future conditions to address the following two objectives: 1) Assess how local food system equity and resilience were impacted by the COVID-19 pandemic, and 2) Examine how policy and behavior changes could support greater equity and resilience within urban local food systems. We used the Community Capitals Framework to organize interviewees’ responses for qualitative analyses of equity and resilience. Four types of community capital were emphasized by stakeholders: cultural and social, natural, and political capital. Participants stated that the local food system in this city is small; more weaknesses in food access, land access, and governance were described than were strengths in both pre- and post-pandemic conditions. Stakeholder responses also reflected lack of equity and resilience in the local food system, which was most pronounced for cultural and social, natural and political capitals. However, local producers’ resilience during the pandemic, which we categorized as human capital, was a notable strength. An improved future food system could incorporate changes in infrastructure (e.g., food processing), markets (e.g., values-based markets) and cultural values (e.g., valuing local food through connections between local producers and consumers). These insights could inform policy and enhance community initiatives and behavior changes to build more equitable and resilient local food systems in urban areas throughout the U.S. Midwest. 
    more » « less
  5. This paper addresses the theme of “the Moral and Ethical Responsibility of Engineers and Engineering”, particularly responding to the question of how to define or deliberate the meaning of ‘public welfare’ and ‘common good’ in engineering degree programs. Drawing from decades of international work on human development, particularly in the global south, this paper reports on adapting the capability approach to an engineering degree program. Developed by Amartya Sen, the capability approach sought to replace GDP-based models of welfare economics by framing the goal of development as enabling individuals to live a life they value. The things a person values, what they are and can do (determined by their opportunities, experiences, and cultural affordances) are their ‘functionings’. In Sen’s framework each individual has a unique ‘functionings vector’ based on what they value. Although someone’s functionings vector indicates valued goals, they will be unsuccessful in achieving their goals unless they have access to needed resources, can effectively utilize those resources, possess agency, and have the ‘capability’ to enact the functionings. ‘Capabilities’ determine the set of functionings that are actually available to a person. Although rarely used in engineering, the capability approach offers a mature and well-developed framework to address issues of public welfare. Public good is defined through an individual’s freedom to pursue a life they have reason to value, and such freedom defines both the means and end of development. The role of engineering in society—primarily through development of infrastructure—is to support equitable access to capabilities for all individuals. Through support of an NSF Revolutionizing Engineering Departments (RED) grant, an ECE department in a mid-Atlantic liberal arts university has adapted the capability approach to inform change in an undergraduate degree program. Specific examples from four years of implementation are shared. 
    more » « less