skip to main content


Title: The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ 18 O over the past 95 million years
The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ 18 O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ 18 O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ 18 O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO 2 , continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.  more » « less
Award ID(s):
1702851 1602557
NSF-PAR ID:
10333429
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
11
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Southern Ocean sea ice plays a central role in the oceanic meridional overturning circulation, transforming globally prevalent watermasses through surface buoyancy loss and gain. Buoyancy loss due to surface cooling and sea ice growth promotes the formation of bottom water that flows into the Atlantic, Indian, and Pacific basins, while buoyancy gain due to sea ice melt helps transform the returning deep flow into intermediate and mode waters. Because northward expansion of Southern Ocean sea ice during the Last Glacial Maximum (LGM; 19–23 kyr BP) may have enhanced deep ocean stratification and contributed to lower atmospheric CO2levels, reconstructions of sea ice extent are critical to understanding the LGM climate state. Here, we present a new sea ice proxy based on the18O/16O ratio of foraminifera (δ18Oc). In the seasonal sea ice zone, sea ice formation during austral winter creates a cold surface mixed layer that persists in the sub‐surface during spring and summer. The cold sub‐surface layer, known as winter water, sits above relatively warm deep water, creating an inverted temperature profile. The unique surface‐to‐deep temperature contrast is reflected in estimates of equilibrium δ18Oc, implying that paired analysis of planktonic and benthic foraminifera can be used to infer sea ice extent. To demonstrate the feasibility of the δ18Ocmethod, we present a compilation ofN. pachydermaandCibicidoidesspp. results from the Atlantic sector that yields an estimate of winter sea ice extent consistent with modern observations.

     
    more » « less
  2. The early Eocene Climatic Optimum (EECO; ~ 53.3 to 49.1 Ma) was a period of the warmest sustained temperatures of the Cenozoic caused by perturbations to the global carbon cycle. Deep sea sediment cores and the microfossils preserved within them are the primary sources of information for these changes in climate and global carbon cycling but are subject to diagenetic alteration after deposition. One of the great challenges in paleoclimate research is determining how to accurately interpreting the proxy record by identifying the amount of chemical alteration of the isotopic and elemental compositions locked within microfossils such as foraminifera. The planktic foraminifera record has been biased by digenesis, provoking questions about the strength of the latitudinal temperature gradient throughout the EECO, specifically with respect to mismatches between proxy data and climate model simulations that remain unresolved. To investigate this question, we selected three deep sea sites that span across the Pacific Ocean, ODP Sites 865, 1209 and DSDP Site 207. From these sediments we extracted carefully screened planktic foraminifera and conducted analysis by two independent approaches on splits of the same individual foraminiferal shells. We measured the δ18O composition by conventional analysis (gas source mass spectrometry), and Mg/Ca ratios on fragments of the same shells by LA-ICP-MS that allows for a careful diagenetic screening. We then independently estimate sea surface temperatures and compare records to quantify the extent of bias in the planktonic foraminifera record. This approach helps to reassess the latitudinal temperature gradients across the EECO. 
    more » « less
  3. Abstract

    We reconstruct sea surface temperatures (SSTs) at Deep Sea Drilling Project Site 608 (42.836°N, 23.087°), north of the Azores Front, and Ocean Drilling Program Site 982 (57.516°N, 15.866°), under the North Atlantic Current, in order to track Miocene (23.1–5.3 Ma) development of North Atlantic surface waters. Mean annual SSTs from TEX86and UK′37proxy estimates at both sites were 10–15 °C higher than modern through the Miocene Climatic Optimum (17–14.5 Ma). During the global cooling of the Middle Miocene Climate Transition (~14.5–12.5 Ma), SSTs at midlatitude Site 608 cooled by ~6 °C, whereas high‐latitude Site 982 cooled by only ~2 °C, resulting in an ~4 Myr collapse of the SST gradient between the two sites. This regional pattern is inconsistent with an increased latitudinal surface temperature gradient, as generally associated with global cooling episodes linked to decreasingpCO2levels. Instead, the pattern is best explained by enhanced ocean heat transport into the high‐latitude North Atlantic superimposed on the global cooling trend, probably due to enhanced Atlantic meridional overturning circulation and/or a stronger North Atlantic Current. During global late Miocene cooling (~8–7 Ma), surface waters cooled by ~6 °C at Site 982 while minimal change occurred at Site 608, reestablishing the North Atlantic SST gradient. The collapse and reemergence of the SST gradient between the middle‐ and high‐latitude North Atlantic suggests that interaction between changes in regional ocean circulation and the global response to changes in greenhouse gas concentration was important in Miocene climate evolution.

     
    more » « less
  4. Abstract

    Marine Isotope Stage 11 from ~424 to 374 ka experienced peak interglacial warmth and highest global sea level ~410–400 ka. MIS 11 has received extensive study on the causes of its long duration and warmer than Holocene climate, which is anomalous in the last half million years. However, a major geographic gap in MIS 11 proxy records exists in the Arctic Ocean where fragmentary evidence exists for a seasonally sea ice‐free summers and high sea‐surface temperatures (SST; ~8–10 °C near the Mendeleev Ridge). We investigated MIS 11 in the western and central Arctic Ocean using 12 piston cores and several shorter cores using proxies for surface productivity (microfossil density), bottom water temperature (magnesium/calcium ratios), the proportion of Arctic Ocean Deep Water versus Arctic Intermediate Water (key ostracode species), sea ice (epipelagic sea ice dwelling ostracode abundance), and SST (planktic foraminifers). We produced a new benthic foraminiferal δ18O curve, which signifies changes in global ice volume, Arctic Ocean bottom temperature, and perhaps local oceanographic changes. Results indicate that peak warmth occurred in the Amerasian Basin during the middle of MIS 11 roughly from 410 to 400 ka. SST were as high as 8–10 °C for peak interglacial warmth, and sea ice was absent in summers. Evidence also exists for abrupt suborbital events punctuating the MIS 12‐MIS 11‐MIS 10 interval. These fluctuations in productivity, bottom water temperature, and deep and intermediate water masses (Arctic Ocean Deep Water and Arctic Intermediate Water) may represent Heinrich‐like events possibly involving extensive ice shelves extending off Laurentide and Fennoscandian Ice Sheets bordering the Arctic.

     
    more » « less
  5. Abstract

    The transition from the warm, stable climate of the Pliocene to the progressively colder glaciations of the Pleistocene, as well as the climate system's evolving response to stationary orbital forcing over the Pleistocene, beg important questions about fundamental climate processes relevant to understanding the impacts of modern anthropogenic forcing of the Earth's energy budget. Here, we gain insight into the evolution of Plio‐Pleistocene climate by generating an alkenone‐derived, orbitally resolved sea surface temperature (SST) record from Ocean Drilling Program Site 1125 in the southwest Pacific. We compare our data set to midlatitude and equatorial SST records and to the benthic ∂18O signal in order to evaluate similarities and differences in climate response between the hemispheres and across latitudes over the Plio‐Pleistocene. Secular trends indicate first‐order symmetry between the Northern and Southern Hemispheres in the magnitude of mean, glacial, and interglacial cooling. However, the tight coupling that is observed on both secular and orbital timescales between Northern Hemisphere, high latitude, and tropical upwelling climate throughout the last 4 Ma does not extend to Southern Hemisphere climate records as Northern Hemisphere glaciation intensifies in the late Pliocene. The 41‐kyr signal remains weak at Site 1125 across the late Pliocene transition but strengthens in conjunction with a major increase in global climate system sensitivity to obliquity forcing beginning around 1.8 Ma. Our analysis points to regionally varied responses across the late Pliocene transition and the emergence of a global feedback mechanism and strengthened obliquity‐band climate sensitivity just prior to the mid‐Pleistocene transition.

     
    more » « less