The goal of the paper is to develop the theory of finite state mean field games with major and minor players when the state space of the game is finite. We introduce the finite player games and derive a mean field game formulation in the limit when the number of minor players tends to infinity. In this limit, we prove that the value functions of the optimization problems are viscosity solutions of PIDEs of the HJB type, and we construct the best responses for both types of players. From there, we prove existence of Nash equilibria under reasonable assumptions. Finally we prove that a form of propagation of chaos holds in the present context and use this result to prove existence of approximate Nash equilibria for the finite player games from the solutions of the mean field games. this vindicate our formulation of the mean field game problem. 
                        more » 
                        « less   
                    
                            
                            A Label-State Formulation of Stochastic Graphon Games and Approximate Equilibria on Large Networks
                        
                    
    
            This paper studies stochastic games on large graphs and their graphon limits. We propose a new formulation of graphon games based on a single typical player’s label-state distribution. In contrast, other recently proposed models of graphon games work directly with a continuum of players, which involves serious measure-theoretic technicalities. In fact, by viewing the label as a component of the state process, we show in our formulation that graphon games are a special case of mean field games, albeit with certain inevitable degeneracies and discontinuities that make most existing results on mean field games inapplicable. Nonetheless, we prove the existence of Markovian graphon equilibria under fairly general assumptions as well as uniqueness under a monotonicity condition. Most importantly, we show how our notion of graphon equilibrium can be used to construct approximate equilibria for large finite games set on any (weighted, directed) graph that converges in cut norm. The lack of players’ exchangeability necessitates a careful definition of approximate equilibrium, allowing heterogeneity among the players’ approximation errors, and we show how various regularity properties of the model inputs and underlying graphon lead naturally to different strengths of approximation. Funding: D. Lacker was partially supported by the Air Force Office of Scientific Research [Grant FA9550-19-1-0291] and the National Science Foundation [Award DMS-2045328]. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2045328
- PAR ID:
- 10333532
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.more » « less
- 
            We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chain by means of semimartingale and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control in the same time, but also extend the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game, as well as how the equilibrium of mean field game consists of an approximative Nash equilibrium for the game with finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states.more » « less
- 
            null (Ed.)We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chains by means of semimartingales and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control at the same time, but also extends the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game as well as how the equilibrium of a mean field game consists of an approximative Nash equilibrium for the game with a finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states.more » « less
- 
            Guruswami, Venkatesan (Ed.)A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called σ-smooth Nash equilibrium, for a {smoothness parameter} σ. In a σ-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a σ-smooth strategy, which is a distribution that does not put too much mass (as parametrized by σ) on any fixed action. We distinguish two variants of σ-smooth Nash equilibria: strong σ-smooth Nash equilibria, in which players are required to play σ-smooth strategies under equilibrium play, and weak σ-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong σ-smooth Nash equilibria have superior computational properties to Nash equilibria: when σ as well as an approximation parameter ϵ and the number of players are all constants, there is a {constant-time} randomized algorithm to find a weak ϵ-approximate σ-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong ϵ-approximate σ-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing ϵ-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time, subject to complexity-theoretic assumptions. We complement our upper bounds by showing that when either σ or ϵ is an inverse polynomial, finding a weak ϵ-approximate σ-smooth Nash equilibria becomes computationally intractable. Our results are the first to propose a variant of Nash equilibrium which is computationally tractable, allows players to act independently, and which, as we discuss, is justified by an extensive line of work on individual choice behavior in the economics literature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    