Both in situ and remote sensing observations of Arctic Ocean hydrography and circulation have improved dramatically in recent decades, and combining the two can yield the most complete picture of Arctic Ocean change. Recent results derived from classical hydrography and satellite ocean altimetry illustrate this synergy and also reveal a fundamental in situ sampling challenge. 
                        more » 
                        « less   
                    
                            
                            Changes in Arctic Ocean Circulation from In Situ and Remotely Sensed Observations
                        
                    
    
            Both in situ and remote sensing observations of Arctic Ocean hydrography and circulation have improved dramatically in recent decades, and combining the two can yield the most complete picture of Arctic Ocean change. Recent results derived from classical hydrography and satellite ocean altimetry illustrate this synergy and also reveal a fundamental in situ sampling challenge. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1951762
- PAR ID:
- 10333586
- Date Published:
- Journal Name:
- Oceanography
- Volume:
- 35
- Issue:
- 2
- ISSN:
- 1042-8275
- Page Range / eLocation ID:
- 57
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of two years with anomalous NAO conditions illustrate how North Atlantic Ocean dynamics relate to the position of the SAF (as indicated by hydrographic properties and stratification changes in the upper water column), and therefore to the properties of the Atlantic inflow and Nordic seas.more » « less
- 
            Abstract This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian Rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and tDOM fluorescence proxies as DOM is removed during freezing. High‐resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea‐ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long‐range transport of TE to the North Atlantic.more » « less
- 
            Abstract Climate model projections suggest a substantial decrease of sea ice export into the outflow areas of the Arctic Ocean over the 21st century. Fram Strait, located in the Greenland Sea sector, is the principal gateway for ice export from the Arctic Ocean. The consequences of lower sea ice flux through Fram Strait on ocean dynamics and primary production in the Greenland Sea remain unknown. By using the most recent 16 years (2003–2018) of satellite imagery available and hydrographic in situ observations, the role of exported Arctic sea ice on water column stratification and phytoplankton production in the Greenland Sea is evaluated. Years with high Arctic sea ice flux through Fram Strait resulted in high sea ice concentration in the Greenland Sea, stronger water column stratification, and an earlier spring phytoplankton bloom associated with high primary production levels. Similarly, years with low Fram Strait ice flux were associated with a weak water column stratification and a delayed phytoplankton spring bloom. This work emphasizes that sea ice and phytoplankton production in subarctic “outflow seas” can be strongly influenced by changes occurring in the Arctic Ocean.more » « less
- 
            Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic OceanAbstract. Heat fluxes steered by mesoscale eddies may be a significant, but still notquantified, source of heat to the surface mixed layer and sea ice cover inthe Arctic Ocean, as well as a source of nutrients for enhancing seasonalproductivity in the near-surface layers. Here we use 4 years (2007–2011)of velocity and hydrography records from a moored profiler over the LaptevSea slope and 15 months (2008–2009) of acoustic Doppler current profilerdata from a nearby mooring to investigate the structure and dynamics ofeddies at the continental margin of the eastern Eurasian Basin. Typical eddyscales are radii of the order of 10 km, heights of 600 m, andmaximum velocities of ∼0.1 m s−1. Eddies areapproximately equally divided between cyclonic and anticyclonicpolarizations, contrary to prior observations from the deep basins and alongthe Lomonosov Ridge. Eddies are present in the mooring records about 20 %–25 % of the time,taking about 1 week to pass through the mooring at anaverage frequency of about one eddy per month. We found that the eddies observed are formed in two distinct regions – near FramStrait, where the western branch of Atlantic Water (AW) enters the ArcticOcean, and near Severnaya Zemlya, where the Fram Strait and Barents Seabranches of the AW inflow merge. These eddies, embedded in the ArcticCircumpolar Boundary Current, carry anomalous water properties along theeastern Arctic continental slope. The enhanced diapycnal mixing that wefound within EB eddies suggests a potentially important role for eddies inthe vertical redistribution of heat in the Arctic Ocean interior.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    