In the Beyond Moore Law era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, the adoption of a wide variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber-resilience and processing prowess. The time is ripe to lay out a roadmap for unconventional computing with nanotechnologies to guide future research and this collection aims to fulfill that need. The authors provide a comprehensive roadmap for neuromorphic computing with electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets and assorted dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain inspired computing for incremental learning and solving problems in severely resource constrained environments. All of these approaches have advantages over conventional Boolean computing predicated on the von-Neumann architecture. With the computational need for artificial intelligence growing at a rate 50x faster than Moore law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon and this roadmap will aid in identifying future needs and challenges.
more »
« less
Massively parallel probabilistic computing with sparse Ising machines
Solving computationally hard problems using conventional computing architectures is often slow and energetically inefficient. Quantum computing may help with these challenges, but it is still in the early stages of development. A quantum-inspired alternative is to build domain-specific architectures with classical hardware. Here we report a sparse Ising machine that achieves massive parallelism where the flips per second—the key figure of merit—scales linearly with the number of probabilistic bits. Our sparse Ising machine architecture, prototyped on a field-programmable gate array, is up to six orders of magnitude faster than standard Gibbs sampling on a central processing unit, and offers 5–18 times improvements in sampling speed compared with approaches based on tensor processing units and graphics processing units. Our sparse Ising machine can reliably factor semi-primes up to 32 bits and it outperforms competition-winning Boolean satisfiability solvers in approximate optimization. Moreover, our architecture can find the correct ground state, even when inexact sampling is made with faster clocks. Our problem encoding and sparsification techniques could be applied to other classical and quantum Ising machines, and our architecture could potentially be scaled to 1,000,000 or more p-bits using analogue silicon or nanodevice technologies.
more »
« less
- Award ID(s):
- 2106260
- PAR ID:
- 10333615
- Date Published:
- Journal Name:
- Nature electronics
- ISSN:
- 2520-1131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.more » « less
-
Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks such as the Ising problem, which requires finding the ground state spin configuration of an arbitrary Ising graph. Physical Ising machines have recently been developed as an alternative to conventional exact and heuristic solvers; however, these machines typically suffer from decreased ground state convergence probability or universality for high edge-density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated nanophotonic recurrent Ising sampler (INPRIS), using a hybrid scheme combining electronics and silicon-on-insulator photonics, that is capable of converging to the ground state of various four-spin graphs with high probability. The INPRIS results indicate that noise may be used as a resource to speed up the ground state search and to explore larger regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent photonic transformation that our machine imparts is a fixed function of the graph problem and therefore compatible with optoelectronic architectures that support GHz clock rates (such as passive or non-volatile photonic circuits that do not require reprogramming at each iteration), this work suggests the potential for future systems that could achieve orders-of-magnitude speedups in exploring the solution space of combinatorially hard problems.more » « less
-
Stochastic computing (SC) reduces the complexity of computation by representing numbers with long streams of independent bits. However, increasing performance in SC comes with either an increase in area or a loss in accuracy. Processing in memory (PIM) computes data in-place while having high memory density and supporting bit-parallel operations with low energy consumption. In this article, we propose COSMO, an architecture for co mputing with s tochastic numbers in me mo ry, which enables SC in memory. The proposed architecture is general and can be used for a wide range of applications. It is a highly dense and parallel architecture that supports most SC encodings and operations in memory. It maximizes the performance and energy efficiency of SC by introducing several innovations: (i) in-memory parallel stochastic number generation, (ii) efficient implication-based logic in memory, (iii) novel memory bit line segmenting, (iv) a new memory-compatible SC addition operation, and (v) enabling flexible block allocation. To show the generality and efficiency of our stochastic architecture, we implement image processing, deep neural networks (DNNs), and hyperdimensional (HD) computing on the proposed hardware. Our evaluations show that running DNN inference on COSMO is 141× faster and 80× more energy efficient as compared to GPU.more » « less
-
A core challenge for superconducting quantum computers is to scale up the number of qubits in each processor without increasing noise or cross-talk. Distributed quantum computing across small qubit arrays, known as chiplets, can address these challenges in a scalable manner. We propose a chiplet architecture over microwave links with potential to exceed monolithic performance on near-term hardware. Our methods of modeling and evaluating the chiplet architecture bridge the physical and network layers in these processors. We find evidence that distributing computation across chiplets may reduce the overall error rates associated with moving data across the device, despite higher error figures for transfers across links. Preliminary analyses suggest that latency is not substantially impacted, and that at least some applications and architectures may avoid bottlenecks around chiplet boundaries. In the long-term, short-range networks may underlie quantum computers just as local area networks underlie classical datacenters and supercomputers today.more » « less
An official website of the United States government

