In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.
- PAR ID:
- 10465748
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Microelectronic computers have encountered challenges in meeting all of today’s demands for information processing. Meeting these demands will require the development of unconventional computers employing alternative processing models and new device physics. Neural network models have come to dominate modern machine learning algorithms, and specialized electronic hardware has been developed to implement them more efficiently. A silicon photonic integration industry promises to bring manufacturing ecosystems normally reserved for microelectronics to photonics. Photonic devices have already found simple analog signal processing niches where electronics cannot provide sufficient bandwidth and reconfigurability. In order to solve more complex information processing problems, they will have to adopt a processing model that generalizes and scales. Neuromorphic photonics aims to map physical models of optoelectronic systems to abstract models of neural networks. It represents a new opportunity for machine information processing on sub-nanosecond timescales, with application to mathematical programming, intelligent radio frequency signal processing, and real-time control. The strategy of neuromorphic engineering is to externalize the risk of developing computational theory alongside hardware. The strategy of remaining compatible with silicon photonics externalizes the risk of platform development. In this perspective article, we provide a rationale for a neuromorphic photonics processor, envisioning its architecture and a compiler. We also discuss how it can be interfaced with a general purpose computer, i.e. a CPU, as a coprocessor to target specific applications. This paper is intended for a wide audience and provides a roadmap for expanding research in the direction of transforming neuromorphic photonics into a viable and useful candidate for accelerating neuromorphic computing.more » « less
-
Abstract Magnonics is a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes. -
null (Ed.)The Rogues Gallery is a new deployment for understanding next-generation hardware with a focus on unorthodox and uncommon technologies. This testbed project was initiated in 2017 in response to Rebooting Computing efforts and initiatives. The Gallery's focus is to acquire new and unique hardware (the rogues) from vendors, research labs, and start-ups and to make this hardware widely available to students, faculty, and industry collaborators within a managed data center environment. By exposing students and researchers to this set of unique hardware, we hope to foster cross-cutting discussions about hardware designs that will drive future performance improvements in computing long after the Moore's Law era of cheap transistors ends. We have defined an initial vision of the infrastructure and driving engineering challenges for such a testbed in a separate document, so here we present highlights of the first one to two years of post-Moore era research with the Rogues Gallery and give an indication of where we see future growth for this testbed and related efforts.more » « less
-
Abstract In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century.more » « less