Abstract Building on previous work using single-basin models, we here explore the time-dependent response of the Atlantic meridional overturning circulation (AMOC) to a sudden global temperature change in a two-basin ocean–ice model. We find that the previously identified mechanisms remain qualitatively useful to explain the transient and the long-term time-mean responses of the AMOC in our simulations. Specifically, we find an initial weakening of the AMOC in response to warming (and vice versa for cooling), controlled by the mid-depth meridional temperature contrast across the Atlantic basin. The long-term mean response instead is controlled primarily by changes in the abyssal stratification within the basin. In contrast to previous studies we find that for small-amplitude surface temperature changes, the equilibrium AMOC is almost unchanged, as the abyssal stratification remains similar due to a substantial compensation between the effects of salinity and temperature changes. The temperature-driven stratification change results from the differential warming/cooling between North Atlantic Deep Water and Antarctic Bottom Water, while the salinity change is driven by changes in Antarctic sea ice formation. Another distinct feature of our simulations is the emergence of AMOC variability in the much colder and much warmer climates. We discuss how this variability is related tomore »
Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas
The Little Ice Age (LIA) was one of the coldest periods of the postglacial period in the Northern Hemisphere. Although there is increasing evidence that this time interval was associated with weakening of the subpolar gyre (SPG), the sequence of events that led to its weakened state has yet to be explained. Here, we show that the LIA was preceded by an exceptional intrusion of warm Atlantic water into the Nordic Seas in the late 1300s. The intrusion was a consequence of persistent atmospheric blocking over the North Atlantic, linked to unusually high solar activity. The warmer water led to the breakup of sea ice and calving of tidewater glaciers; weakening of the blocking anomaly in the late 1300s allowed the large volume of ice that had accumulated to be exported into the North Atlantic. This led to a weakening of the SPG, setting the stage for the subsequent LIA.
- Award ID(s):
- 1744515
- Publication Date:
- NSF-PAR ID:
- 10333662
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 51
- ISSN:
- 2375-2548
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pronounced changes in the Arctic environment add a new potential driver of anomalous weather patterns in midlatitudes that affect billions of people. Recent studies of these Arctic/midlatitude weather linkages, however, state inconsistent conclusions. A source of uncertainty arises from the chaotic nature of the atmosphere. Thermodynamic forcing by a rapidly warming Arctic contributes to weather events through changing surface heat fluxes and large-scale temperature and pressure gradients. But internal shifts in atmospheric dynamics—the variability of the location, strength, and character of the jet stream, blocking, and stratospheric polar vortex (SPV)—obscure the direct causes and effects. It is important to understand these associated processes to differentiate Arctic-forced variability from natural variability. For example in early winter, reduced Barents/Kara Seas sea-ice coverage may reinforce existing atmospheric teleconnections between the North Atlantic/Arctic and central Asia, and affect downstream weather in East Asia. Reduced sea ice in the Chukchi Sea can amplify atmospheric ridging of high pressure near Alaska, influencing downstream weather across North America. In late winter southward displacement of the SPV, coupled to the troposphere, leads to weather extremes in Eurasia and North America. Combined tropical and sea ice conditions can modulate the variability of the SPV. Observational evidence for Arctic/midlatitude weathermore »
-
Abstract The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of twomore »
-
International Ocean Discovery Program Expedition 382, Iceberg Alley and South Falkland Slope Ice and Ocean Dynamics, will investigate the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in atmospheric CO2 in the past and how ice sheet evolution influenced global sea level. We will drill six sites in the Scotia Sea, east of the Antarctic Peninsula, providing the first deep drilling in this region of the Southern Ocean. We expect to recover >600 m of late Neogene sediment that will be used to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. Expedition 382 expects to deliver the first spatially and temporally integrated record of iceberg flux from “Iceberg Alley,” the main pathway by which icebergs are calved from the margin of the AIS and travel equatorward into warmer waters of the Antarctic Circumpolar Current (ACC). In particular, we will characterize the magnitude of iceberg flux during key times of AIS evolution: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm interval, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet,more »
-
International Ocean Discovery Program Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediments to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, •more »