skip to main content

This content will become publicly available on July 1, 2023

Title: A Human-machine Interface for Few-shot Rule Synthesis for Information Extraction
We propose a system that assists a user in constructing transparent information extraction models, consisting of patterns (or rules) written in a declarative language, through program synthesis. Users of our system can specify their requirements through the use of examples, which are collected with a search interface. The rule-synthesis system proposes rule candidates and the results of applying them on a textual corpus; the user has the option to accept the candidate, request another option, or adjust the examples provided to the system. Through an interactive evaluation, we show that our approach generates high-precision rules even in a 1-shot setting. On a second evaluation on a widely-used relation extraction dataset (TACRED), our method generates rules that outperform considerably manually written patterns. Our code, demo, and documentation is available at
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Many data processing systems allow SQL queries that call user-defined functions (UDFs) written in conventional programming languages. While such SQL extensions provide convenience and flexibility to users, queries involving UDFs are not as efficient as their pure SQL counterparts that invoke SQL’s highly-optimized built-in functions. Motivated by this problem, we propose a new technique for translating SQL queries with UDFs to pure SQL expressions. Unlike prior work in this space, our method is not based on syntactic rewrite rules and can handle a much more general class of UDFs. At a high-level, our method is based on counterexample-guided inductive synthesis (CEGIS) but employs a novel compositional strategy that decomposes the synthesis task into simpler sub-problems. However, because there is no universal decomposition strategy that works for all UDFs, we propose a novel lazy inductive synthesis approach that generates a sequence of decompositions that correspond to increasingly harder inductive synthesis problems. Because most realistic UDF-to-SQL translation tasks are amenable to a fine-grained decomposition strategy, our lazy inductive synthesis method scales significantly better than traditional CEGIS. We have implemented our proposed technique in a tool called CLIS for optimizing Spark SQL programs containing Scala UDFs. To evaluate CLIS, we manually study 100more »randomly selected UDFs and find that 63 of them can be expressed in pure SQL. Our evaluation on these 63 UDFs shows that CLIS can automatically synthesize equivalent SQL expressions in 92% of the cases and that it can solve 2.4× more benchmarks compared to a baseline that does not use our compositional approach. We also show that CLIS yields an average speed-up of 3.5× for individual UDFs and 1.3× to 3.1× in terms of end-to-end application performance.« less
  2. While deep learning approaches to information extraction have had many successes, they can be difficult to augment or maintain as needs shift. Rule-based methods, on the other hand, can be more easily modified. However, crafting rules requires expertise in linguistics and the domain of interest, making it infeasible for most users. Here we attempt to combine the advantages of these two directions while mitigating their drawbacks. We adapt recent advances from the adjacent field of program synthesis to information extraction, synthesizing rules from provided examples. We use a transformer-based architecture to guide an enumerative search, and show that this reduces the number of steps that need to be explored before a rule is found. Further, we show that our synthesized rules achieve state-of-the-art performance on the 1-shot scenario of a task that focuses on few-shot learning for relation classification, and competitive performance in the 5-shot scenario.
  3. Many aspects of human reasoning, including language, require learning rules from very little data. Humans can do this, often learning systematic rules from very few examples, and combining these rules to form compositional rule-based systems. Current neural architectures, on the other hand, often fail to generalize in a compositional manner, especially when evaluated in ways that vary systematically from training. In this work, we present a neuro-symbolic model which learns entire rule systems from a small set of examples. Instead of directly predicting outputs from inputs, we train our model to induce the explicit system of rules governing a set of previously seen examples, drawing upon techniques from the neural program synthesis literature. Our rule-synthesis approach outperforms neural meta-learning techniques in three domains: an artificial instruction-learning domain used to evaluate human learning, the SCAN challenge datasets, and learning rule-based translations of number words into integers for a wide range of human languages.
  4. Trigger-action programming (TAP) is a programming model enabling users to connect services and devices by writing if-then rules. As such systems are deployed in increasingly complex scenarios, users must be able to identify programming bugs and reason about how to fix them. We first systematize the temporal paradigms through which TAP systems could express rules. We then identify ten classes of TAP programming bugs related to control flow, timing, and inaccurate user expectations. We report on a 153-participant online study where participants were assigned to a temporal paradigm and shown a series of pre-written TAP rules. Half of the rules exhibited bugs from our ten bug classes. For most of the bug classes, we found that the presence of a bug made it harder for participants to correctly predict the behavior of the rule. Our findings suggest directions for better supporting end-user programmers.
  5. We propose an explainable approach for relation extraction that mitigates the tension between generalization and explainability by jointly training for the two goals. Our approach uses a multi-task learning architecture, which jointly trains a classifier for relation extraction, and a sequence model that labels words in the context of the relation that explain the decisions of the relation classifier. We also convert the model outputs to rules to bring global explanations to this approach. This sequence model is trained using a hybrid strategy: supervised, when supervision from pre-existing patterns is available, and semi-supervised otherwise. In the latter situation, we treat the sequence model’s labels as latent variables, and learn the best assignment that maximizes the performance of the relation classifier. We evaluate the proposed approach on the two datasets and show that the sequence model provides labels that serve as accurate explanations for the relation classifier’s decisions, and, importantly, that the joint training generally improves the performance of the relation classifier. We also evaluate the performance of the generated rules and show that the new rules are great add-on to the manual rules and bring the rule-based system much closer to the neural models.