skip to main content


Title: Double-lined Spectroscopic Binaries in the APOGEE DR16 and DR17 Data
Abstract APOGEE spectra offer ≲1 km s −1 precision in the measurement of stellar radial velocities. This holds even when multiple stars are captured in the same spectrum, as happens most commonly with double-lined spectroscopic binaries (SB2s), although random line-of-sight alignments of unrelated stars can also occur. We develop a code that autonomously identifies SB2s and higher order multiples in the APOGEE spectra, resulting in 7273 candidate SB2s, 813 SB3s, and 19 SB4s. We estimate the mass ratios of binaries, and for a subset of these systems with a sufficient number of measurements we perform a complete orbital fit, confirming that most systems with periods of <10 days have circularized. Overall, we find an SB2 fraction ( F SB2 ) ∼ 3% among main-sequence dwarfs, and that there is not a significant trend in F SB2 with temperature of a star. We are also able to recover a higher F SB2 in sources with lower metallicity, however there are some observational biases. We also examine light curves from TESS to determine which of these spectroscopic binaries are also eclipsing. Such systems, particularly those that are also pre- and post-main sequence, are good candidates for a follow-up analysis to determine their masses and temperatures.  more » « less
Award ID(s):
1715662
NSF-PAR ID:
10333823
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
162
Issue:
5
ISSN:
0004-6256
Page Range / eLocation ID:
184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We created the APOGEE-GALEX-Gaia catalog to study white dwarf (WD) binaries. This database aims to create a minimally biased sample of WD binary systems identified from a combination of GALEX, Gaia, and APOGEE data to increase the number of WD binaries with orbital parameters and chemical compositions. We identify 3414 sources as WD binary candidates, with nondegenerate companions of spectral types between F and M, including main-sequence stars, main-sequence binaries, subgiants, sub-subgiants, red giants, and red clump stars. Among our findings are (a) a total of 1806 systems having inferred WD radii R < 25 R ⊕ , which constitute a more reliable group of WD binary candidates within the main sample; (b) a difference in the metallicity distribution function between WD binary candidates and the control sample of most luminous giants ( M H < −3.0); (c) the existence of a population of sub-subgiants with WD companions; (d) evidence for shorter periods in binaries that contain WDs compared to those that do not, as shown by the cumulative distributions of APOGEE radial velocity shifts; (e) evidence for systemic orbital evolution in a sample of 252 WD binaries with orbital periods, based on differences in the period distribution between systems with red clump, main-sequence binary, and sub-subgiant companions and systems with main-sequence or red giant companions; and (f) evidence for chemical enrichment during common envelope (CE) evolution, shown by lower metallicities in wide WD binary candidates ( P > 100 days) compared to post-CE ( P < 100 days) WD binary candidates. 
    more » « less
  2. Abstract We report the characterization of 28 low-mass (0.02 M ⊙ ≤ M 2 ≤ 0.25 M ⊙ ) companions to Kepler objects of interest (KOIs), eight of which were previously designated confirmed planets. These objects were detected as transiting companions to Sunlike stars (G and F dwarfs) by the Kepler mission and are confirmed as single-lined spectroscopic binaries in the current work using the northern multiplexed Apache Point Observatory Galactic Evolution Experiment near-infrared spectrograph (APOGEE-N) as part of the third and fourth Sloan Digital Sky Surveys. We have observed hundreds of KOIs using APOGEE-N and collected a total of 43,175 spectra with a median of 19 visits and a median baseline of ∼1.9 yr per target. We jointly model the Kepler photometry and APOGEE-N radial velocities to derive fundamental parameters for this subset of 28 transiting companions. The radii for most of these low-mass companions are overinflated (by ∼10%) when compared to theoretical models. Tidally locked M dwarfs on short-period orbits show the largest amount of inflation, but inflation is also evident for companions that are well separated from the host star. We demonstrate that APOGEE-N data provide reliable radial velocities when compared to precise high-resolution spectrographs that enable detailed characterization of individual systems and the inference of orbital elements for faint ( H > 12) KOIs. The data from the entire APOGEE-KOI program are public and present an opportunity to characterize an extensive subset of the binary population observed by Kepler. 
    more » « less
  3. ABSTRACT

    We measure star-spot filling fractions for 240 stars in the Pleiades and M67 open star clusters using APOGEE high-resolution H-band spectra. For this work, we developed a modified spectroscopic pipeline which solves for star-spot filling fraction and star-spot temperature contrast. We exclude binary stars, finding that the large majority of binaries in these clusters (80 per cent) can be identified from Gaia DR3 and APOGEE criteria – important for field star applications. Our data agree well with independent activity proxies, indicating that this technique recovers real star-spot signals. In the Pleiades, filling fractions saturate at a mean level of 0.248 ± 0.005 for active stars with a decline at slower rotation; we present fitting functions as a function of Rossby number. In M67, we recover low mean filling fractions of 0.030 ± 0.008 and 0.003 ± 0.002 for main sequence GK stars and evolved red giants, respectively, confirming that the technique does not produce spurious spot signals in inactive stars. Star-spots also modify the derived spectroscopic effective temperatures and convective overturn time-scales. Effective temperatures for active stars are offset from inactive ones by −109 ± 11 K, in agreement with the Pecaut & Mamajek empirical scale. Star-spot filling fractions at the level measured in active stars changes their inferred overturn time-scale, which biases the derived threshold for saturation. Finally, we identify a population of stars statistically discrepant from mean activity–Rossby relations and present evidence that these are genuine departures from a Rossby scaling. Our technique is applicable to the full APOGEE catalogue, with broad applications to stellar, galactic, and exoplanetary astrophysics.

     
    more » « less
  4. null (Ed.)
    ABSTRACT The All-Sky Automated Survey for Supernovae provides long baseline (∼4 yr) V-band light curves for sources brighter than V≲ 17 mag across the whole sky. We produced V-band light curves for a total of ∼61.5 million sources and systematically searched these sources for variability. We identified ∼426 000 variables, including ∼219 000 new discoveries. Most (${\sim }74{ per\ cent}$) of our discoveries are in the Southern hemisphere. Here, we use spectroscopic information from LAMOST, GALAH, RAVE, and APOGEE to study the physical and chemical properties of these variables. We find that metal-poor eclipsing binaries have orbital periods that are shorter than metal-rich systems at fixed temperature. We identified rotational variables on the main-sequence, red giant branch, and the red clump. A substantial fraction (${\gtrsim }80{ per\ cent}$) of the rotating giants have large $v$rot or large near-ultraviolet excesses also indicative of fast rotation. The rotational variables have unusual abundances suggestive of analysis problems. Semiregular variables tend to be lower metallicity ($\rm [Fe/H]{\sim }-0.5$) than most giant stars. We find that the APOGEE DR16 temperatures of oxygen-rich semiregular variables are strongly correlated with the WRP − WJK colour index for $\rm T_{eff}\lesssim 3800$ K. Using abundance measurements from APOGEE DR16, we find evidence for Mg and N enrichment in the semiregular variables. We find that the Aluminum abundances of the semiregular variables are strongly correlated with the pulsation period, where the variables with $\rm P\gtrsim 60$ d are significantly depleted in Al. 
    more » « less
  5. null (Ed.)
    Abstract We present a search for close, unresolved companions in a subset of spatially resolved Gaia wide binaries containing main-sequence stars within 200 pc of the Sun, utilizing the APOGEE–Gaia Wide Binary Catalog. A catalog of 37 wide binaries was created by selecting pairs of stars with nearly identical Gaia positions, parallaxes, and proper motions, and then confirming candidates to be gravitationally-bound pairs using APOGEE radial velocities. We identify close, unresolved stellar and substellar candidate companions in these multiple systems using (1) the Gaia binary main-sequence and (2) observed periodic radial velocity variations in APOGEE measurements due to the influence of a close substellar-mass companion. The studied wide binary pairs reveal a total of four stellar-mass close companions in four different wide binaries, and four substellar-mass close companion candidates in two wide binaries. The latter are therefore quadruple systems, with one substellar mass companion orbiting each wide binary component in an S-type orbit. Taken at face value, these candidate systems represent an enhancement of an order of magnitude over the expected occurrence rate of ∼2 per cent of stars having substellar companions >2 MJup within ∼100 day orbits; we discuss implications and possible explanations for this result. Finally, we compare chemical differences between the components of the wide binaries and the components of the candidate higher-order systems and find that any chemical influence or correlation due to the presence of close companions to wide binary stars is not discernible. 
    more » « less