skip to main content


Title: "Employing mobile sensor density to approximate state feedback kernels in static output feedback control of PDEs,"
This work considers the replacement of a full-state feedback controller by a static output feedback controller employing a finite number of point sensors. This is achieved by the approximation of the feedback kernel associated with the full state feedback operator. The feedback kernel is partitioned into equiareal cells and an appropriately selected centroid within each cell serves as the sensor location. This allows one to approximate the inner product of the feedback kernel and the full state by the finite weighted sum of static output feedback measurements. By equating the feedback kernel with the density of a hypothetical sensor network, the problem of approximating the sensor density becomes that of partitioning the sensor density using the proposed computational-geometry based decomposition that is based on a modification of Centroidal Voronoi Tessellations. When the control is considered over a finite horizon and/or the actuator itself is repositioned within the spatial domain, the resulting feedback kernel is rendered time-varying. This requires its partitioning at each time leading to mobile sensors within the spatial domain. Two guidance policies are proposed: one uses the partitioning of the kernel method at each time to find the optimal sensors thus resulting in moving sensors. The other method uses the kernel partitioning only at the initial time and subsequently uses the sensor density as the initial condition for an advection PDE that represents the evolution of the sensor density. This advection PDE is solved for the velocity thereby providing the velocity of the density of the sensor network. Projecting the sensor density velocity onto the same partitioning used for the kernel provides the sensor velocities. A numerical example of an advection diffusion PDE is presented to provide an understanding of this computational geometry based partitioning of feedback kernels.  more » « less
Award ID(s):
1825546
NSF-PAR ID:
10333824
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 American Control Conference (ACC),
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. . (Ed.)
    This work is concerned with the use of mobile sensors to approximate and replace the full state feedback controller by static output feedback controllers for a class of PDEs. Assuming the feedback operator associated with the full-state feedback controller admits a kernel representation, the proposed optimization aims to approximate the inner product of the kernel and the full state by a finite sum of weighted scalar outputs provided by the mobile sensors. When the full state feedback operator is time-dependent thus rendering its associated kernel time-varying, the approximation results in moving sensors with time-varying static gains. To calculate the velocity of the mobile sensors within the spatial domain the time-varying kernel is set equal to the sensor density and thus the solution to an associated advection PDE reveals the velocity field of the sensor network. To obtain the speed of the finite number of sensors, a domain decomposition based on a modification of the Centroidal Voronoi Tessellations (µ-CVT) is used to decompose the kernel into a finite number of cells, each of which contains a single sensor. A subsequent application of the µ-CVT on the velocity field provides the individual sensor speeds. The nature of this µ-CVT ensures collision avoidance by the very structure of the kernel decomposition into non-intersecting cells. Numerical simulations are provided to highlight the proposed sensor guidance. 
    more » « less
  2. This paper is motivated by economic aspects of fixed initial and operating costs for control of spatially distributed systems. In particular, the paper investigates the possibility of a large number of inexpensive actuating and sensing devices, as an alternative to (a reduced number of) expensive high capacity devices. While such an alternative reduces the fixed initial costs associated with actuators and sensors, it may also lead to increased operating costs resulting from communication requirements between the now-networked actuator-sensor-control units. To simplify the controller architecture, a proportional controller is assumed that amounts to a static output feedback controller. In a network of n actuator-sensor pairs, an all-to-all communication topology results in a fully populated static output feedback matrix with as much as n(n-1) communication links. In addition to a traditional performance index used to obtain the static output feedback gain matrix, this paper proposes a mixed index wherein both the traditional performance index and the number of communication links (representing operating costs associated with information exchange links), are taken into account. As an example, the proposed scheme is applied to a parabolic partial differential equation having four actuator-sensor pairs. The resulting optimization produces a sparse static gain matrix with a communication topology that has half the graph edges of the fully connected case and with essentially the same performance. 
    more » « less
  3. This paper considers a class of distributed parameter systems that can be controlled by an actuator onboard a mobile platform. In order to avoid computational costs and control architecture complexity associated with a joint optimization of actuator guidance and control law, a suboptimal policy is proposed that significantly reduces the computational costs. By utilizing a continuous-discrete optimal control design, a mobile actuator moves to a new position at the beginning of a new time interval and resides for a prescribed time. Using the cost to go with variable lower limit, the optimization simplifies to solving algebraic Riccati equations instead of differential Riccati equations. Adding a hardware feature whereby the mobile sensors are constrained to stay within the proximity of the mobile actuator, a feedback kernel decomposition scheme is proposed to approximate a full state feedback controller by the weighted sum of sensor measurements. 
    more » « less
  4. This paper combines two control design aspects for a class of infinite dimensional systems, and each of the designs aims at significantly reducing the implementation complexity and computational load. A functional observer, and its extension of an unknown input functional observer, aims to reconstruct a functional of the infinite dimensional state. The resulting compensator only requires the solution to an operator Sylvester equation plus one differential equation for each dimension of the control signal, as opposed to an infinite dimensional filter evolution equation and an associated operator Riccati equation for the filter operator covariance. When the functional to be estimated coincides with the expression of a full state feedback control signal, then the functional observer becomes the minimum order compensator. When the parabolic system admits a decomposition whereby the system is decomposed into a lower finite dimensional subspace comprising the unstable eigenspectrum and an infinite stable subspace, then the functional observer-based compensator design becomes the minimum order compensator for the finite dimensional subsystem. This approach dramatically reduces the computation for solving the ARE needed for the full state controller and the associated Sylvester equation needed for the functional observer. Numerical results for a parabolic PDE in one and two spatial dimensions are included. 
    more » « less
  5. The work provides a general model of communication attacks on a networked infinite dimensional system. The system employs a network of inexpensive control units consisting of actuators, sensors and control processors. In an effort to replace a reduced number of expensive high-end actuating and sensing devices implementing an observer-based feedback, the alternate is to use multiple inexpensive actuators/sensors with static output feedback. In order to emulate the performance of the high-end devices, the controllers for the multiple actuator/sensors implement controllers which render the system networked. In doing so, they become prone to communication attacks either as accidental or deliberate actions on the connectivity of the control nodes. A single attack function is proposed which models all types of communication attacks and an adaptive detection scheme is proposed in order to (i) detect the presence of an attack, (ii) diagnose the attack and (iii) accommodate the attack via an appropriate control reconfiguration. The reconfiguration employs the adaptive estimates of the controller gains and restructure the controller adaptively in order to minimize the detrimental effects of the attack on closed-loop performance. Numerical studies on a 1D diffusion PDE employing networked actuator/sensor pairs are included in order to further convey the special architecture of detection and accommodation of networked systems under communication attacks. 
    more » « less