skip to main content


Title: A Comprehensive Study of Multiflare GRB Spectral Lag
Abstract We select 48 multiflare gamma-ray bursts (GRBs) (including 137 flares) from the Swift/XRT database and estimate the spectral lag with the discrete correlation function. It is found that 89.8% of the flares have positive lags and only 9.5% of the flares show negative lags when fluctuations are taken into account. The median lag of the multiflares (2.75 s) is much greater than that of GRB pulses (0.18 s), which can be explained by the fact that we confirm that multiflare GRBs and multipulse GRBs have similar positive lag–duration correlations. We investigate the origin of the lags by checking the E peak evolution with the two brightest bursts and find the leading models cannot explain all of the multiflare lags and there may be other physical mechanisms. All of the results above reveal that X-ray flares have the same properties as GRB pulses, which further supports the observation that X-ray flares and GRB prompt-emission pulses have the same physical origin.  more » « less
Award ID(s):
2011759
NSF-PAR ID:
10333929
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sorted by the photon fluences of short Gamma-ray Bursts (SGRBs) detected by the Fermi-Gamma Ray Burst Monitor (GBM), nine brightest bursts are selected to perform a comprehensive analysis. All GRB lightcurves are fitted well by 1 to 3 pulses that are modelled by fast-rising exponential decay profile (FRED), within which the resultant rising time is strongly positive-correlated with the full time width at half maxima (FWHM). A photon spectral model involving a cutoff power-law function and a standard blackbody function (CPL + BB) could reproduce the spectral energy distributions of these SGRBs well in the bursting phase. The CPL’s peak energy is found strongly positive-correlated with the BB’s temperature, which indicates they might be from the same physical origin. Possible physical origins are discussed to account for these correlations. 
    more » « less
  2. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less
  3. Abstract Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data. 
    more » « less
  4. Context. There has been significant technological and scientific progress in our ability to detect, monitor, and model the physics of γ -ray bursts (GRBs) over the 50 years since their first discovery. However, the dissipation process thought to be responsible for their defining prompt emission is still unknown. Recent efforts have focused on investigating how the ultrarelativistic jet of the GRB propagates through the progenitor’s stellar envelope for different initial composition shapes, jet structures, magnetisation, and, consequently, possible energy dissipation processes. Study of the temporal variability – in particular the shortest duration of an independent emission episode within a GRB – may provide a unique way to distinguish the imprint of the inner engine activity from geometry and propagation related effects. The advent of new high-energy detectors with exquisite time resolution now makes this possible. Aims. We aim to characterise the minimum variability timescale (MVT) defined as the shortest duration of individual pulses that shape a light curve for a sample of GRBs in the keV–MeV energy range and test correlations with other key observables such as the peak luminosity, the Lorentz factor, and the jet opening angle. We compare these correlations with predictions from recent numerical simulations for a relativistic structured – possibly wobbling – jet and assess the value of temporal variability studies as probes of prompt-emission dissipation physics. Methods. We used the peak detection algorithm MEPSA to identify the shortest pulse within a GRB time history and preliminarily calibrated MEPSA to estimate the full width at half maximum duration. We then applied this framework to two sets of GRBs: Swift GRBs (from 2005 to July 2022) and Insight Hard Modulation X-ray Telescope (Insight-HXMT) GRBs (from June 2017 to July 2021, including the exceptional 221009A). We then selected 401 GRBs with measured redshift to test for correlations. Results. We confirm that, on average, short GRBs have significantly shorter MVTs than long GRBs. The MVT distribution of short GRBs with extended emission such as 060614 and 211211A is compatible only with that of short GRBs. This is important because it provides a new clue concerning the progenitor’s nature. The MVT for long GRBs with measured redshift anti-correlates with peak luminosity; our analysis includes careful evaluation of selection effects. We confirm the anti-correlation with the Lorentz factor and find a correlation with the jet opening angle as estimated from the afterglow light curve, along with an inverse correlation with the number of pulses. Conclusions. The MVT can identify the emerging putative new class of long GRBs that are suggested to be produced by compact binary mergers. For otherwise typical long GRBs, the different correlations between MVT and peak luminosity, Lorentz factor, jet opening angle, and number of pulses can be explained within the context of structured, possibly wobbling, weakly magnetised relativistic jets. 
    more » « less
  5. ABSTRACT

    Gamma-ray bursts (GRBs), observed to redshift z = 9.4, are potential probes of the largely unexplored z ∼ 2.7–9.4 part of the early Universe. Thus, finding relevant relations among GRB physical properties is crucial. We find that the Platinum GRB data compilation, with 50 long GRBs (with relatively flat plateaus and no flares) in the redshift range 0.553 ≤ z ≤ 5.0, and the LGRB95 data compilation, with 95 long GRBs in 0.297 ≤ z ≤ 9.4, as well as the 145 GRB combination of the two, strongly favour the 3D Fundamental Plane (Dainotti) correlation (between the peak prompt luminosity, the luminosity at the end of the plateau emission, and its rest-frame duration) over the 2D one (between the luminosity at the end of the plateau emission and its duration). The 3D Dainotti correlations in the three data sets are standardizable. We find that while LGRB95 data have ∼50 per cent larger intrinsic scatter parameter values than the better-quality Platinum data, they provide somewhat tighter constraints on cosmological-model and GRB-correlation parameters, perhaps solely due to the larger number of data points, 95 versus 50. This suggests that when compiling GRB data for the purpose of constraining cosmological parameters, given the quality of current GRB data, intrinsic scatter parameter reduction must be balanced against reduced sample size.

     
    more » « less