skip to main content


Title: A Comprehensive Study of Bright Fermi-GBM Short Gamma-ray Bursts: I. Multi-Pulse Lightcurves and Multi-Component Spectra
Sorted by the photon fluences of short Gamma-ray Bursts (SGRBs) detected by the Fermi-Gamma Ray Burst Monitor (GBM), nine brightest bursts are selected to perform a comprehensive analysis. All GRB lightcurves are fitted well by 1 to 3 pulses that are modelled by fast-rising exponential decay profile (FRED), within which the resultant rising time is strongly positive-correlated with the full time width at half maxima (FWHM). A photon spectral model involving a cutoff power-law function and a standard blackbody function (CPL + BB) could reproduce the spectral energy distributions of these SGRBs well in the bursting phase. The CPL’s peak energy is found strongly positive-correlated with the BB’s temperature, which indicates they might be from the same physical origin. Possible physical origins are discussed to account for these correlations.  more » « less
Award ID(s):
2011759
NSF-PAR ID:
10333953
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Universe
Volume:
8
Issue:
3
ISSN:
2218-1997
Page Range / eLocation ID:
159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The association of GRB170817A with a binary neutron star (BNS) merger has revealed that BNSs produce at least a fraction of short gamma-ray bursts (SGRBs). As gravitational wave (GW) detectors push their horizons, it is important to assess coupled electromagnetic (EM)/GW probabilities and maximize observational prospects. Here, we perform BNS population synthesis calculations with the code mobse, seeding the binaries in galaxies at three representative redshifts, $z$ = 0.01, 0.1, and 1 of the Illustris TNG50 simulation. The binaries are evolved and their locations numerically tracked in the host galactic potentials until merger. Adopting the microphysics parameters of GRB170817A, we numerically compute the broad-band light curves of jets from BNS mergers, with the afterglow brightness dependent on the local medium density at the merger site. We perform Monte Carlo simulations of the resulting EM population assuming either a random viewing angle with respect to the jet, or a jet aligned with the orbital angular momentum of the binary, which biases the viewing angle probability for GW-triggered events. We find a gamma-ray detection probability of $\sim\!2{{\rm per\ cent}},10{{\rm per\ cent}},\mathrm{and}\ 40{{\rm per\ cent}}$ for BNSs at $z$ = 1, 0.1, and 0.01, respectively, for the random case, rising to $\sim\!75{{\rm per\ cent}}$ for the $z$ = 0.01, GW-triggered aligned case. Afterglow detection probabilities of GW-triggered BNS mergers vary in the range of $\sim \! 0.3 \!-\! 0.5{{\rm per\ cent}}$, with higher values for aligned jets, and are comparable across the high- and low-energy bands, unlike gamma-ray-triggered events (cosmological SGRBs) which are significantly brighter at higher energies. We further quantify observational biases with respect to host galaxy masses.

     
    more » « less
  2. ABSTRACT

    A significant fraction (30 per cent) of well-localized short gamma-ray bursts (sGRBs) lack a coincident host galaxy. This leads to two main scenarios: (i) that the progenitor system merged outside of the visible light of its host, or (ii) that the sGRB resided within a faint and distant galaxy that was not detected by follow-up observations. Discriminating between these scenarios has important implications for constraining the formation channels of neutron star mergers, the rate and environments of gravitational wave sources, and the production of heavy elements in the Universe. In this work, we present the results of our observing campaign targeted at 31 sGRBs that lack a putative host galaxy. Our study effectively doubles the sample of well-studied sGRB host galaxies, now totaling 72 events of which $28{{\ \rm per\ cent}}$ lack a coincident host to deep limits (r ≳ 26 or F110W ≳ 27 AB mag), and represents the largest homogeneously selected catalogue of sGRB offsets to date. We find that 70 per cent of sub-arcsecond localized sGRBs occur within 10 kpc of their host’s nucleus, with a median projected physical offset of 5.6 kpc. Using this larger population, we discover an apparent redshift evolution in their locations: bursts at low-z occur at 2 × larger offsets compared to those at z > 0.5. This evolution could be due to a physical evolution of the host galaxies themselves or a bias against faint high-z galaxies. Furthermore, we discover a sample of hostless sGRBs at z ≳ 1 that are indicative of a larger high-z population, constraining the redshift distribution and disfavoring lognormal delay time models.

     
    more » « less
  3. ABSTRACT Some short gamma-ray bursts (SGRBs) show a longer lasting emission phase, called extended emission (EE) lasting ${\sim}10^{2\!-\!3}\, \rm s$, as well as a plateau emission (PE) lasting ${\sim}10^{4\!-\!5}\, \rm s$. Although a long-lasting activity of the central engines is a promising explanation for powering both emissions, their physical origin and their emission mechanisms are still uncertain. In this work, we study the properties of the EEs and their connection with the PEs. First, we constrain the minimal Lorentz factor Γ of the outflows powering EEs, using compactness arguments and find that the outflows should be relativistic, Γ ≳ 10. We propose a consistent scenario for the PEs, where the outflow eventually catches up with the jet responsible for the prompt emission, injecting energy into the forward shock formed by the prior jet, which naturally results in a PE. We also derive the radiation efficiency of EEs and the Lorentz factor of the outflow within our scenario for 10 well-observed SGRBs accompanied by both EE and PE. The efficiency has an average value of ${\sim}3\, {{\ \rm per\ cent}}$ but shows a broad distribution ranging from ∼0.01 to ${\sim}100{{\ \rm per\ cent}}$. The Lorentz factor is ∼20–30, consistent with the compactness arguments. These results suggest that EEs are produced by a slower outflow via more inefficient emission than the faster outflow that causes the prompt emission with a high radiation efficiency. 
    more » « less
  4. Since its launch in 2002, the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected many gamma-ray bursts (GRBs), which are summarised in the INTEGRAL Burst Alert System (IBAS) catalogue. This catalogue combines triggers from the data of the Imager on Board the INTEGRAL (IBIS) and of the anti-coincident shield (ACS) of the SPectrometer on INTEGRAL (SPI). Since the Germanium detectors of SPI also serve as a valuable GRB detector on their own, we present an up-to-date time-resolved catalogue covering all GRBs detected by SPI through the end of 2021 in this work. Thanks to SPI’s high energy coverage (20 keV−8 MeV) and excellent energy resolution, it can improve the modelling of the curvature of the spectrum around the peak and, consequently, it could provide clues on the still unknown emission mechanism of GRBs. We split the SPI light curves of the individual GRBs in time bins of approximately constant signals to determine the temporal evolution of spectral parameters. We tested both the empirical spectral models as well as a physical synchrotron spectral model against the data. For most GRBs, the SPI data cannot constrain the high-energy power law shape above the peak energy, but the parameter distributions for the cut-off power law fits are similar to those of the time-resolved catalogue of gamma-ray burst monitor (GBM) GRBs. We find that a physical synchrotron model can fit the SPI data of GRBs well. While checking against detections of other GRB instruments, we identified one new SPI GRB in the SPI field of view that had not been reported before. 
    more » « less
  5. Abstract

    The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadband observations of SGRBs, together with measurements of the time delay between the gravitational waves and the electromagnetic radiation, allow for probing the properties of the emitting outflow and its engine to an unprecedented detail. Because the structure of the radiating outflow is molded by the interaction of a relativistic jet with the binary ejecta, it is of paramount importance to study the system in a realistic setting. Here we present a three-dimensional hydrodynamic simulation of a relativistic jet propagating in the ejecta of a BNS merger, which were computed with a general relativistic magnetohydrodynamic simulation. We find that the jet’s centroid oscillates around the axis of the system, due to inhomogeneities encountered in the propagation. These oscillations allow the jet to find the path of least resistance and travel faster than an identical jet in smooth ejecta. In our setup the breakout time is ∼0.6 s, which is comparable to the expected central engine duration in SGRBs and possibly a non-negligible fraction of the total delay between the gravitational and gamma-ray signals. Our simulation also shows that energy is carried in roughly equal amounts by the jet and by the cocoon, and that about 20% of the injected energy is transferred to the ejecta via mechanical work.

     
    more » « less