skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prevalence of Extra Power-Law Spectral Components in Short Gamma-Ray Bursts
Abstract A prompt extra power-law (PL) spectral component that usually dominates the spectral energy distribution below tens of keV or above ∼10 MeV has been discovered in some bright gamma-ray bursts (GRBs). However, its origin is still unclear. In this paper, we present a systematic analysis of 13 Fermi short GRBs, as of 2020 August, with contemporaneous keV–MeV and GeV detections during the prompt emission phase. We find that the extra PL component is a ubiquitous spectral feature for short GRBs, showing up in all 13 analyzed GRBs. The PL indices are mostly harder than −2.0, which may be well reproduced by considering the electromagnetic cascade induced by ultrarelativistic protons or electrons accelerated in the prompt emission phase. The average flux of these extra PL components positively correlates with that of the main spectral components, which implies they may share the same physical origin.  more » « less
Award ID(s):
2011759
PAR ID:
10333931
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A thermal component is suggested to be the physical composition of the ejecta of several bright gamma-ray bursts (GRBs). Such a thermal component is discovered in the time-integrated spectra of several short GRBs as well as long GRBs. In this work, we present a comprehensive analysis of ten very short GRBs detected by Fermi Gamma-Ray Burst Monitor to search for the thermal component. We found that both the resultant low-energy spectral index and the peak energy in each GRB imply a common hard spectral feature, which is in favor of the main classification of the short/hard versus long/soft dichotomy in the GRB duration. We also found moderate evidence for the detection of thermal component in eight GRBs. Although such a thermal component contributes a small proportion of the global prompt gamma-ray emission, the modified thermal-radiation mechanism could enhance the proportion significantly, such as in subphotospheric dissipation. 
    more » « less
  2. Abstract The radiation mechanism underlying the prompt emission remains unresolved and can be resolved using a systematic and uniform time-resolved spectro-polarimetric study. In this paper, we investigated the spectral, temporal, and polarimetric characteristics of five bright gamma-ray bursts (GRBs) using archival data from AstroSat CZTI, Swift Burst Alert Telescope, and Fermi/GBM. These bright GRBs were detected by CZTI in its first year of operation, and their average polarization characteristics have been published in Chattopadhyay et al. In the present work, we examined the time-resolved (in 100–600 keV) and energy-resolved polarization measurements of these GRBs with an improved polarimetric technique such as increasing the effective area and bandwidth (by using data from low-gain pixels), using an improved event selection logic to reduce noise in the double events and extend the spectral bandwidth. In addition, we also separately carried out detailed time-resolved spectral analyses of these GRBs using empirical and physical synchrotron models. By these improved time-resolved and energy-resolved spectral and polarimetric studies (not fully coupled spectro-polarimetric fitting), we could pin down the elusive prompt emission mechanism of these GRBs. Our spectro-polarimetric analysis reveals that GRB 160623A, GRB 160703A, and GRB 160821A have Poynting flux-dominated jets. On the other hand, GRB 160325A and GRB 160802A have baryonic-dominated jets with mild magnetization. Furthermore, we observe a rapid change in polarization angle by ∼90° within the main pulse of very bright GRB 160821A, consistent with our previous results. Our study suggests that the jet composition of GRBs may exhibit a wide range of magnetization, which can be revealed by utilizing spectro-polarimetric investigations of the bright GRBs. 
    more » « less
  3. Context. There has been significant technological and scientific progress in our ability to detect, monitor, and model the physics of γ -ray bursts (GRBs) over the 50 years since their first discovery. However, the dissipation process thought to be responsible for their defining prompt emission is still unknown. Recent efforts have focused on investigating how the ultrarelativistic jet of the GRB propagates through the progenitor’s stellar envelope for different initial composition shapes, jet structures, magnetisation, and, consequently, possible energy dissipation processes. Study of the temporal variability – in particular the shortest duration of an independent emission episode within a GRB – may provide a unique way to distinguish the imprint of the inner engine activity from geometry and propagation related effects. The advent of new high-energy detectors with exquisite time resolution now makes this possible. Aims. We aim to characterise the minimum variability timescale (MVT) defined as the shortest duration of individual pulses that shape a light curve for a sample of GRBs in the keV–MeV energy range and test correlations with other key observables such as the peak luminosity, the Lorentz factor, and the jet opening angle. We compare these correlations with predictions from recent numerical simulations for a relativistic structured – possibly wobbling – jet and assess the value of temporal variability studies as probes of prompt-emission dissipation physics. Methods. We used the peak detection algorithm MEPSA to identify the shortest pulse within a GRB time history and preliminarily calibrated MEPSA to estimate the full width at half maximum duration. We then applied this framework to two sets of GRBs: Swift GRBs (from 2005 to July 2022) and Insight Hard Modulation X-ray Telescope (Insight-HXMT) GRBs (from June 2017 to July 2021, including the exceptional 221009A). We then selected 401 GRBs with measured redshift to test for correlations. Results. We confirm that, on average, short GRBs have significantly shorter MVTs than long GRBs. The MVT distribution of short GRBs with extended emission such as 060614 and 211211A is compatible only with that of short GRBs. This is important because it provides a new clue concerning the progenitor’s nature. The MVT for long GRBs with measured redshift anti-correlates with peak luminosity; our analysis includes careful evaluation of selection effects. We confirm the anti-correlation with the Lorentz factor and find a correlation with the jet opening angle as estimated from the afterglow light curve, along with an inverse correlation with the number of pulses. Conclusions. The MVT can identify the emerging putative new class of long GRBs that are suggested to be produced by compact binary mergers. For otherwise typical long GRBs, the different correlations between MVT and peak luminosity, Lorentz factor, jet opening angle, and number of pulses can be explained within the context of structured, possibly wobbling, weakly magnetised relativistic jets. 
    more » « less
  4. Abstract We select 48 multiflare gamma-ray bursts (GRBs) (including 137 flares) from the Swift/XRT database and estimate the spectral lag with the discrete correlation function. It is found that 89.8% of the flares have positive lags and only 9.5% of the flares show negative lags when fluctuations are taken into account. The median lag of the multiflares (2.75 s) is much greater than that of GRB pulses (0.18 s), which can be explained by the fact that we confirm that multiflare GRBs and multipulse GRBs have similar positive lag–duration correlations. We investigate the origin of the lags by checking the E peak evolution with the two brightest bursts and find the leading models cannot explain all of the multiflare lags and there may be other physical mechanisms. All of the results above reveal that X-ray flares have the same properties as GRB pulses, which further supports the observation that X-ray flares and GRB prompt-emission pulses have the same physical origin. 
    more » « less
  5. Aims. With the accumulation of polarization data in the gamma-ray burst (GRB) prompt phase, polarization models can be tested. Methods. We predicted the time-integrated polarizations of 37 GRBs with polarization observation. We used their observed spectral parameters to do this. In the model, the emission mechanism is synchrotron radiation, and the magnetic field configuration in the emission region was assumed to be large-scale ordered. Therefore, the predicted polarization degrees (PDs) are upper limits. Results. For most GRBs detected by the Gamma-ray Burst Polarimeter (GAP), POLAR, and AstroSat, the predicted PD can match the corresponding observed PD. Hence the synchrotron-emission model in a large-scale ordered magnetic field can interpret both the moderately low PDs (∼10%) detected by POLAR and relatively high PDs (∼45%) observed by GAP and AstroSat well. Therefore, the magnetic fields in these GRB prompt phases or at least during the peak times are dominated by the ordered component. However, the predicted PDs of GRB 110721A observed by GAP and GRB 180427A observed by AstroSat are both lower than the observed values. Because the synchrotron emission in an ordered magnetic field predicts the upper-limit of the PD for the synchrotron-emission models, PD observations of the two bursts challenge the synchrotron-emission model. Then we predict the PDs of the High-energy Polarimetry Detector (HPD) and Low-energy Polarimetry Detector (LPD) on board the upcoming POLAR-2. In the synchrotron-emission models, the concentrated PD values of the GRBs detected by HPD will be higher than the LPD, which might be different from the predictions of the dissipative photosphere model. Therefore, more accurate multiband polarization observations are highly desired to test models of the GRB prompt phase. 
    more » « less