skip to main content


Title: Detection of a Prompt Fast-variable Thermal Component in the Multipulse Short Gamma-Ray Burst 170206A
Abstract We report the detection of a strong thermal component in the short gamma-ray burst 170206A with three intense pulses in its light curves, throughout which the fluxes of this thermal component exhibit fast temporal variability the same as that of the accompanying nonthermal component. The values of the time-resolved low-energy photon index in the nonthermal component are between about −0.79 and −0.16, most of which are harder than the −2/3 expected in the synchrotron emission process. In addition, we found a common evolution between the thermal component and the nonthermal component, E p , CPL ∝ kT BB 0.95 ± 0.28 and F CPL ∝ F BB 0.67 ± 0.18 , where E p,CPL and F CPL are the peak photon energy and corresponding flux of the nonthermal component, and kT BB and F BB are the temperature and corresponding flux of the thermal component, respectively. Finally, we proposed that the photospheric thermal emission and the Comptonization of thermal photons may be responsible for the observational features of GRB 170206A.  more » « less
Award ID(s):
2011759
NSF-PAR ID:
10333960
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rapid X-ray phase-dependent flux enhancement in the archetype classical Cepheid starδCep was observed by XMM-Newton and Chandra. We jointly analyze thermal and nonthermal components of the time-resolved X-ray spectra prior to, during, and after the enhancement. A comparison of the timescales of shock particle acceleration and energy losses is consistent with the scenario of a pulsation-driven shock wave traveling into the stellar corona and accelerating electrons to ∼GeV energies, and with Inverse Compton (IC) emission from the UV stellar background leading to the observed X-ray enhancement. The index of the nonthermal IC photon spectrum, assumed to be a simple power law in the [1–8] keV energy range, radially integrated within the shell [3–10] stellar radii, is consistent with an enhanced X-ray spectrum powered by shock-accelerated electrons. An unlikely ∼100-fold amplification via turbulent dynamo of the magnetic field at the shock propagating through density inhomogeneities in the stellar corona is required for the synchrotron emission to dominate over the IC; the lack of time correlation between radio synchrotron and stellar pulsation contributes to make synchrotron as an unlikely emission mechanism for the flux enhancement. Although current observations cannot rule out a high-flux two-temperature thermal spectrum with a negligible nonthermal component, this event might confirm for the first time the association of Cepheids pulsation with shock-accelerated GeV electrons.

     
    more » « less
  2. Abstract Nonpotential magnetic energy promptly released in solar flares is converted to other forms of energy. This may include nonthermal energy of flare-accelerated particles, thermal energy of heated flaring plasma, and kinetic energy of eruptions, jets, upflows/downflows, and stochastic (turbulent) plasma motions. The processes or parameters governing partitioning of the released energy between these components are an open question. How these components are distributed between distinct flaring loops and what controls these spatial distributions are also unclear. Here, based on multiwavelength data and 3D modeling, we quantify the energy partitioning and spatial distribution in the well-observed SOL2014-02-16T064620 solar flare of class C1.5. Nonthermal emission of this flare displayed a simple impulsive single-spike light curve lasting about 20 s. In contrast, the thermal emission demonstrated at least three distinct heating episodes, only one of which was associated with the nonthermal component. The flare was accompanied by upflows and downflows and substantial turbulent velocities. The results of our analysis suggest that (i) the flare occurs in a multiloop system that included at least three distinct flux tubes; (ii) the released magnetic energy is divided unevenly between the thermal and nonthermal components in these loops; (iii) only one of these three flaring loops contains an energetically important amount of nonthermal electrons, while two other loops remain thermal; (iv) the amounts of direct plasma heating and that due to nonthermal electron loss are comparable; and (v) the kinetic energy in the flare footpoints constitutes only a minor fraction compared with the thermal and nonthermal energies. 
    more » « less
  3. The corona is an integral component of active galactic nuclei (AGNs) which produces the bulk of the X-ray emission above 1-2 keV. However, many of its physical properties and the mechanisms powering this emission remain a mystery. In particular, the temperature of the coronal plasma has been difficult to constrain for large samples of AGNs, as constraints require high-quality broadband X-ray spectral coverage extending above 10 keV in order to measure the high-energy cutoff, which provides constraints on the combination of coronal optical depth and temperature. We present constraints on the coronal temperature for a large sample of Seyfert 1 AGNs selected from the Swift/BAT survey using high-quality hard X-ray data from the NuSTAR observatory combined with simultaneous soft X-ray data from Swift/XRT or XMM-Newton. When applying a physically motivated, nonrelativistic disk-reflection model to the X-ray spectra, we find a mean coronal temperature kT e = 84 ± 9 keV. We find no significant correlation between the coronal cutoff energy and accretion parameters such as the Eddington ratio and black hole mass. We also do not find a statistically significant correlation between the X-ray photon index, Γ, and Eddington ratio. This calls into question the use of such relations to infer properties of supermassive black hole systems. 
    more » « less
  4. Abstract Gamma-ray bursts (GRBs) exhibit a diversity of spectra. Several spectral models (e.g., Band, cutoff power law (CPL), and blackbody) and their hybrid versions (e.g., Band+blackbody) have been widely used to fit the observed GRB spectra. Here, we attempt to collect all the bursts detected by Fermi/GBM with known redshifts from 2008 July to 2022 May, having been motivated to (i) provide a parameter catalog independent of the official Fermi/GBM team and (ii) achieve a “clean” model-based GRB spectral energy correlation analysis. A nearly complete GRB sample is created, containing 153 such bursts (136 long GRBs and 17 short GRBs). Using the sample and by performing detailed spectral analysis and model comparisons, we investigate two GRB spectral energy correlations: the correlation of the cosmological rest-frame peak energy ( E p, z ) of the ν F ν prompt emission spectrum with (i) the isotropic-bolometric-equivalent emission energy E γ ,iso (the Amati relation) and (ii) the isotropic-bolometric-equivalent peak luminosity L p,iso (the Yonetoku relation). From a linear regression analysis, a tight correlation between E p, z and E γ ,iso (and L γ ,iso ) is found for both Band-like and CPL-like bursts (except for CPL-like long burst E p, z – E γ ,iso correlation). More interestingly, CPL-like bursts do not fall on the Band-like burst Amati and Yonetoku correlations, suggesting distinct radiation processes, and pointing to the fact that these spectral energy correlations are tightly reliant on the model-wise properties. 
    more » « less
  5. Abstract Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data. 
    more » « less