skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From weak to strong interactions: structural and electron topology analysis of the continuum from the supramolecular chalcogen bonding to covalent bonds
The relationship between covalent and supramolecular bonding, and the criteria of the assignments of different interactions were explored via the review of selenium and tellurium containing structures in the Cambridge Structural Database and their computational analysis using Quantum Theory of Atoms in Molecules (QTAIM). This combined study revealed continuums of the interatomic Se⋯Br and Te⋯I distances, d Ch⋯X , in the series of associations from the sums of the van der Waals radii of these atoms ( r Ch + r X ) to their covalent bond lengths. The electron densities, ρ ( r ), at Bond Critical Points (BCPs) along the chalcogen bond paths increased gradually from about 0.01 a.u. common for the non-covalent interactions to about 0.1 a.u. typical for the covalent bonds. The log  ρ ( r ) values fell on the same linear trend line when plotted against normalized interatomic distances, R XY = d Ch⋯X /( r Ch + r X ). The transition from the positive to negative values of the energy densities, H ( r ), at the BCPs (related to a changeover of essentially non-covalent into partially covalent interactions) were observed at R XY ≈ 0.80. Synchronous changes of bonding characteristics with R XY (similar to that found earlier in the halogen-bonded systems) designated normalized interatomic separation as a critical factor determining the nature of these bondings. The uninterrupted continuums of Te⋯I and Se⋯Br bond lengths and BCPs’ characteristics signified an intrinsic link between limiting types of bonding involving chalcogen atoms and between covalent and supramolecular bonding in general.  more » « less
Award ID(s):
2003603
PAR ID:
10333978
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
14
ISSN:
1463-9076
Page Range / eLocation ID:
8251 to 8259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The wide-range variation of the strength of halogen bonds (XB) not only facilitates a variety of applications of this interaction, but it also allows examining the relation (and interconversion) between supramolecular and covalent bonding. Herein, the Br…Cl halogen bonding in a series of complexes of bromosubstituted electrophiles (R-Br) with chloride anions were examined via X-ray crystallographic and computational methods. Six co-crystals showing such bonding were prepared by evaporation of solutions of R-Br and tetra-n-propylammonium chloride or using Cl− anions released in the nucleophilic reaction of 1,4-diazabicyclo[2.2.2]octane with dichloromethane in the presence of R-Br. The co-crystal comprised networks formed by 3:3 or 2:2 halogen bonding between R-Br and Cl−, with the XB lengths varying from 3.0 Å to 3.25 Å. Analysis of the crystallographic database revealed examples of associations with substantially longer and shorter Br…Cl separations. DFT computations of an extended series of R–Br…Cl− complexes confirmed that the judicious choice of brominated electrophile allows varying halogen Br…Cl bond strength and length gradually from the values common for the weak intermolecular complexes to that approaching a fully developed covalent bond. This continuity of halogen bond strength in the experimental (solid-state) and calculated associations indicates a fundamental link between the covalent and supramolecular bonding. 
    more » « less
  2. The amino group of 2-amino-5-(4-halophenyl)-1,3,4-chalcogenadiazole has been replaced with bromo/iodo substituents to obtain a library of four compositionally related compounds. These are 2-iodo-5-(4-iodophenyl)-1,3,4-thiadiazole, C8H4I2N2S, 2-bromo-5-(4-bromophenyl)-1,3,4-selenadiazole, C8H4Br2N2Se, 2-bromo-5-(4-iodophenyl)-1,3,4-selenadiazole, C8H4BrIN2Se, and 2-bromo-5-(4-iodophenyl)-1,3,4-thiadiazole, C8H4BrIN2S. All were isostructural and contained bifurcated Ch...N (Ch is chalcogen) andX...X(Xis halogen) interactions forming a zigzag packing motif. The noncovalent Ch...N interaction between the chalcogen-bond donor and the best-acceptor N atom appeared preferentially instead of a possible halogen bond to the same N atom. Hirshfeld surface analysis and energy framework calculations showed that, collectively, a bifurcated chalcogen bond was stronger than halogen bonding and this is more structurally influential in this system. 
    more » « less
  3. The relationship between solid-state supramolecular interactions and crystal habits is highlighted based on experimental and computational analysis of the crystal structure of strong halogen-bonded (HaB) associations between iodine-containing dihalogens (ICl, IBr) with 1,4-diazabicyclo[2,2,2]octane (DABCO) as well as with substituted pyridines and phenazine. The pattern of the energy frameworks and the interplay of the attractive and repulsive interactions in the solid-state associations involving these HaB donors and acceptors directly correlated with their crystal habits. This correlation suggests that analysis of the energy framework serves as a useful tool (complementary to the earlier developed methods) to rationalize and predict the crystal habit. The X-ray structural analysis also revealed that the I⋯N distances in the complexes were in the 2.24–2.54 Å range, i.e. they were much closer to the I⋯N covalent bond length than to the van der Waals separation. The computational analysis of the nature of halogen bonding in these complexes showed delocalization of their molecular orbitals' between donor and acceptors resulting in a substantial charge transfer from the nucleophiles to dihalogens and elongation of the I⋯X bond. As a result, both I⋯N and I⋯X bonds in the strongest complexes ( e.g. , ICl with DABCO or 4-dimethylaminopyridine) are characterized by the comparable Mayer bonds orders of about 0.6, along with the electron and energy densities at their bond critical points of about 0.1 a.u. and −0.02 a.u., respectively. These data as well as the density overlap regions indicator (DORI) point to the covalency of the I⋯N bonding and suggest that the interaction within the IX complexes can be described as (unsymmetrical) hypervalent 3c/4e N⋯I⋯X bonding akin to that in trihalide or halonium ions. 
    more » « less
  4. This article reviews the history and the current state of knowledge concerning the ability of the heavy chalcogen atoms S and Se, and to some extent Te, to participate in a H-bond as either proton donor or acceptor. These atoms are nearly as effective proton acceptors as O, and only slightly weaker as donor. They can also participate in chalcogen bonds where they act as electron acceptors from a nucleophile. These bonds rapidly strengthen as the chalcogen atom becomes larger: S < Se < Te, or if they are surrounded by electron-withdrawing substituents, and can exceed that of many types of H-bonds. Experimental and computational evidence indicates that both H-bonds and chalcogen bonds involving S and Se occur widely in chemical and biological systems, and play an active role in structure and function. 
    more » « less
  5. Molecules of the type XYT = Ch (T = C, Si, Ge; Ch = S, Se; X,Y = H, CH3, Cl, Br, I) contain a σ-hole along the T = Ch bond extension. This hole can engage with the N lone pair of NCH and NCCH3 so as to form a chalcogen bond. In the case of T = C, these bonds are rather weak, less than 3 kcal/mol, and are slightly weakened in acetone or water. They owe their stability to attractive electrostatic energy, supplemented by dispersion, and a much smaller polarization term. Immersion in solvent reverses the electrostatic interaction to repulsive, while amplifying the polarization energy. The σ-holes are smaller for T = Si and Ge, even negative in many cases. These Lewis acids can nonetheless engage in a weak chalcogen bond. This bond owes its stability to dispersion in the gas phase, but it is polarization that dominates in solution. 
    more » « less