skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lessons Learned: Making the “New Reality” More Real: Adjusting a Hands-on Curriculum for Remote Learning
This is a Lessons-Learned paper. During the past years the Mechanical Engineering program at XXXX has made numerous curricular changes that focus on cultivating a culture of “engineering with engineers” and developing strong engineering identities in their students. The four major changes in the curriculum include implementing an integrated electrical engineering and data acquisition (DAQ) course sequence, adding a vertically integrated design projects (VIDP) course sequence, modifying an existing design sequence, and adding real engineering into existing courses. Many of these changes rely on hands-on labs and on creating connections between students and industry. In the spring of 2020, the pandemic forced the program to offer all of its courses online and challenged the department to rethink how it could continue its strong hands-on, industry-focused program. Most courses were quickly flipped and online class time via Zoom focused on community building and small group discussions. New checks and activities helped to keep students engaged and provided regular feedback to instructors on student progress. Lab assignments were modified so that all lab work could be done remotely. This paper details these changes, describes successes and failures, and discusses lessons learned. A summary of the paper will be presented as a lightning-talk during the 2021 ASEE Annual Conference.  more » « less
Award ID(s):
1730354
PAR ID:
10334059
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE annual conference
ISSN:
0190-1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. WIP: The Mechanical Engineering (ME) Department at Seattle University was awarded a 2017 NSF RED (Revolutionizing Engineering and Computer Science Departments) grant. This award provided the opportunity to create a program where students and faculty are immersed in a culture of doing engineering with practicing engineers that in turn fosters an identity of being an engineer. Of the many strategies implemented to support this goal, one significant curricular change was the creation of a new multi-year design course sequence. This set of three courses, the integrated design project (IDP) sequence, creates an annual curricular-driven opportunity for students to interact with each other and professional engineers in the context of an open-ended design project. These three courses are offered to all departmental first-, second-, and third-year students simultaneously during the spring quarter each year. Each course consists of design-focused classroom instruction tailored to that class year, and a term design project that is completed by teams of students drawn from all three class years. This structure provides students with regular design education, while also creating a curricular space for students across the department to interact with and learn from one of another in a meaningful way. This structure not only prepares students for their senior design experience, but also builds a sense of community and belonging in the department. Furthermore, to support the "engineering with engineers" vision, volunteer engineers from industry participate as consultants in the design project activities, giving students the opportunity to learn from professionals regularly throughout their entire four years in the program. This course sequence was offered for the first time in 2020, and while the global pandemic impacted the experience, the initial offering was by all accounts a success. This paper provides an overview of the motivation for the three IDP courses, their format, objectives, and specific implementation details, and a discussion of some of the lessons learned. These particulars provide other engineering departments with a roadmap for how to implement this type of a curricular experience in their own programs. 
    more » « less
  2. Semiconductor/Microsystems education is in growing demand due to the demand to bring semiconducting manufacturing back to the USA. At the University of New Mexico (UNM), we have six courses that teach different aspects of semiconductor/microsystems manufacturing from theory to hands-on experience. The Advanced Microfabrication course is a multidisciplinary graduate course that is taken by students with various background and primarily from two different programs i) Nanoscience and Microsystems Engineering (NSME) Program (an interdisciplinary program across various schools and departments) and ii) students from the Mechanical Engineering Department. The course typically consists of a series of lectures along with hands-on microfabrication labs in a cleanroom which were designed to complement the lectures. The course material is multidisciplinary with topics ranging from chemistry, physics, mechanical engineering, electrical engineering, chemical engineering, statistics, material science and biomedical. This comparison study investigates several factors such as lab components, synchronous online versus in-person lectures, and students discipline to determine impact on the final exam (performance) in the course. Based on n=99 students over seven years it was determined that students from the interdisciplinary programs performed better with an average score of 64.04 ±13.26% compared to ME students 55.02 ±16.81%. It was also determined that both in-person lectures and students participating in labs had a significant impact on their final exam grades. Students who attended in-person lectures scored an average of 64.35 ± 15.11% whereas online students scored 51.81 ±14.77%, that is an increase of 12.54%. Students attending hands-on labs also had a significant impact resulting in a 10.17% increase in scores. The results demonstrate that the multidisciplinary material of advanced semiconductor manufacturing is potentially best learned through a combination of in-person lectures and hands-on lab experience and that students who have a more interdisciplinary background are likely to perform better due to the multidisciplinary course contents. 
    more » « less
  3. In engineering education, laboratory learning that is well aligned with core content knowledge is instrumental as it plays a significant role in students’ knowledge construction, application, and distribution. Learning in laboratories is interactive in nature, and therefore students who learn engineering through online platforms can face many challenges with labs, which were frequently documented during the recent pandemic. To address those reported challenges, innovative online lab learning modules were developed and learning strategies were implemented in five courses in electrical engineering, Circuits I, Electronics I, Electronics II, Signals and Systems, and Microcomputers I, through which students gain solid foundation before students take on senior design projects. Lab modules with open-ended design learning experience through using a lab-in-a-box approach were developed to allow students to solve lab problems with multiple approaches that allow problem solving independently and collaboratively. Because this innovative lab design allows problem solving at various cognitive levels, it is better suited for concept exploration and collaborative lab learning environments as opposed to the traditional lab works with a “cookbook” approach that tend to lead students to follow certain procedures for expected solutions with the absence of problem exploration stage. In addition to the open-ended lab modules, course instructors formed online lab groups through which students shared the entire problem-solving process from ideas formation to solutions through trial and error. To investigate the effectiveness of the open-ended online lab learning experiences, students in all courses were randomly divided into experimental and control groups. Students in the control group learned in labs through learning materials that are aligned with core concepts by following a completed given procedures students in the experimental group learned through inquiry-based labs learning materials that required them to work in teams by integrating core concepts together to find solutions with multiple approaches. To maximize the online lab learning effect and to replicate the way industry, commerce and research practice, instructor structured cooperative learning strategies were applied along with pre-lab simulations and videos. The research results showed that generally students in the experimental group outperformed their counterparts in labs especially with more advanced concept understanding and applications, but showed mixed results for the overall class performance based on their course learning outcomes such as quizzes, lab reports, and tests. Further, survey results showed that 72% of students reported open-ended lab learning helped them learn better. According to interviews, the initial stage of working with team members was somewhat challenging from difficulties in finding time to work together for discussion and problem solving. Yet, through many communication tools, such as course LMS and mobile apps they were able to collaborate in lab problems, which also led them to build learning communities that went beyond the courses. 
    more » « less
  4. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students' perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students' perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less
  5. A computational approach has become an indispensable tool in materials science research and related industry. At the University of Illinois, Urbana-Champaign, our team at the Department of Materials Science and Engineering (MSE), as part of a Strategic Instructional Initiatives Program (SIIP), has integrated computation into multiple MSE undergraduate courses over the last years. This has established a stable environment for computational education in MSE undergraduate courses through the duration of the program. To date, all MSE students are expected to have multiple experiences of solving practical problems using computational modules before graduation. In addition, computer-based techniques have been integrated into course instruction through iClicker, lecture recording, and online homework and testing. In this paper, we seek to identify the impact of these changes beyond courses participating in the original SIIP project. We continue to keep track of students’ perception of the computational curriculum within participating courses. Furthermore, we investigate the influence of the computational exposure on students’ perspective in research and during job search. Finally, we collect and analyze feedback from department faculty regarding their experience with teaching techniques involving computation. 
    more » « less