skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Response to Valle and Zorello Laporta: Clarifying the Use of Instrumental Variable Methods to Understand the Effects of Environmental Change on Infectious Disease Transmission
ABSTRACT. Identifying the effects of environmental change on the transmission of vectorborne and zoonotic diseases is of fundamental importance in the face of rapid global change. Causal inference approaches, including instrumental variable (IV) estimation, hold promise in disentangling plausibly causal relationships from observational data in these complex systems. Valle and Zorello Laporta recently critiqued the application of such approaches in our recent study of the effects of deforestation on malaria transmission in the Brazilian Amazon on the grounds that key statistical assumptions were not met. Here, we respond to this critique by 1) deriving the IV estimator to clarify the assumptions that Valle and Zorello Laporta conflate and misrepresent in their critique, 2) discussing these key assumptions as they relate to our original study and how our original approach reasonably satisfies the assumptions, and 3) presenting model results using alternative instrumental variables that can be argued more strongly satisfy key assumptions, illustrating that our results and original conclusion—that deforestation drives malaria transmission—remain unchanged.  more » « less
Award ID(s):
2011147
PAR ID:
10334205
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The American Journal of Tropical Medicine and Hygiene
Volume:
105
Issue:
6
ISSN:
0002-9637
Page Range / eLocation ID:
1456 to 1459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that, in a general family of linearized structural macroeconomic models, knowledge of the empirically estimable causal effects of contemporaneous and news shocks to the prevailing policy rule is sufficient to construct counterfactuals under alternative policy rules. If the researcher is willing to postulate a loss function, our results furthermore allow her to recover an optimal policy rule for that loss. Under our assumptions, the derived counterfactuals and optimal policies are robust to the Lucas critique. We then discuss strategies for applying these insights when only a limited amount of empirical causal evidence on policy shock transmission is available. 
    more » « less
  2. Instrumental variable (IV) strategies are widely used to estimate causal effects in economics, political science, epidemiology, sociology, psychology, and other fields. When there is unobserved heterogeneity in causal effects, standard linear IV estimators only represent effects for complier subpopulations (Imbens and Angrist, 1994). Marginal treatment effect (MTE) methods (Heckman and Vytlacil, 1999, 2005) allow researchers to use additional assumptions to extrapolate beyond complier subpopulations. We discuss a flexible framework for MTE methods based on linear regression and the generalized method of moments. We show how to implement the framework using the ivmte package for R. 
    more » « less
  3. Summary Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment and outcome. We first consider nondifferential measurement errors, that is, the mismeasured variable does not depend on other variables given its true value. We show that the measurement error of the instrumental variable does not bias the estimate, that the measurement error of the treatment biases the estimate away from zero, and that the measurement error of the outcome biases the estimate toward zero. Moreover, we derive sharp bounds on the causal effects without additional assumptions. These bounds are informative because they exclude zero. We then consider differential measurement errors, and focus on sensitivity analyses in those settings. 
    more » « less
  4. Abstract Instrumental variables have been widely used to estimate the causal effect of a treatment on an outcome. Existing confidence intervals for causal effects based on instrumental variables assume that all of the putative instrumental variables are valid; a valid instrumental variable is a variable that affects the outcome only by affecting the treatment and is not related to unmeasured confounders. However, in practice, some of the putative instrumental variables are likely to be invalid. This paper presents two tools to conduct valid inference and tests in the presence of invalid instruments. First, we propose a simple and general approach to construct confidence intervals based on taking unions of well‐known confidence intervals. Second, we propose a novel test for the null causal effect based on a collider bias. Our two proposals outperform traditional instrumental variable confidence intervals when invalid instruments are present and can also be used as a sensitivity analysis when there is concern that instrumental variables assumptions are violated. The new approach is applied to a Mendelian randomization study on the causal effect of low‐density lipoprotein on globulin levels. 
    more » « less
  5. Abstract The interactions of environmental, geographic, socio-demographic, and epidemiological factors in shaping mosquito-borne disease transmission dynamics are complex and changeable, influencing the abundance and distribution of vectors and the pathogens they transmit. In this study, 27 years of cross-sectional malaria survey data (1990–2017) were used to examine the effects of these factors onPlasmodium falciparumandPlasmodium vivaxmalaria presence at the community level in Africa and Asia. Monthly long-term, open-source data for each factor were compiled and analyzed using generalized linear models and classification and regression trees. Both temperature and precipitation exhibited unimodal relationships with malaria, with a positive effect up to a point after which a negative effect was observed as temperature and precipitation increased. Overall decline in malaria from 2000 to 2012 was well captured by the models, as was the resurgence after that. The models also indicated higher malaria in regions with lower economic and development indicators. Malaria is driven by a combination of environmental, geographic, socioeconomic, and epidemiological factors, and in this study, we demonstrated two approaches to capturing this complexity of drivers within models. Identifying these key drivers, and describing their associations with malaria, provides key information to inform planning and prevention strategies and interventions to reduce malaria burden. 
    more » « less