skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Subject-Independent Freezing of Gait (FoG) Prediction in Parkinson's Disease Patients
Freezing of gait (FoG), which implies a brief absence or reduction of ability to walk, is one of the most common symptoms of Parkinson's Disease (PD). Predicting FoG episodes in time can prevent their onset by providing specific cues to the patients. This paper presents a deep learning approach to predict FoG episodes using a Long Short-Term Memory network (LSTM). It also identifies key issues and concepts which have not been dwelled upon before in the existing literature, paving the way to a more systematic methodology for future work. We evaluate our approach using a publicly available dataset that includes accelerometer readings from 10 PD patients. We achieve up to 89% prediction accuracy with an average prediction time of 1.42 s using a subject-independent model.  more » « less
Award ID(s):
2114499
PAR ID:
10334249
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Biomedical Circuits and Systems Conference (BioCAS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our retrospective study of falls and resultant trauma in consecutive Parkinson disease (PD) patients seen in one year at the Muhammad Ali Parkinson Clinic found that multiple-fallers could be divided into patients who fell mainly when walking or those who fell mainly when standing. Patients who fell when walking were more likely to visit an emergency room or be admitted to a hospital. Of 455 consecutive patients who were evaluated over a one-year period, 51 were excluded because they had atypical Parkinson disorders, had multiple risk factors for falling, or were demented. Unified Parkinson Disease Rating Scales and Zeno Walkway results were compared among non-fallers, single-fallers, and multiple-fallers. Among multiple-fallers, comparisons were made between patients who fell mainly when standing and those who fell mainly when walking. Most patients (197, 49%) did not fall, 142 (35%) fell once, and 65 (16%) fell more than once. Multiple-fallers differed significantly from single-fallers and non-fallers: they had PD significantly longer (p<0.001), were more severely affected (p<0.001), and took shorter steps (p<0.001). Of 65 multiple-fallers, 26 (40%) fell mainly when standing, 28 (43%) fell mainly when walking, and 11 (17%) fell equally often when standing or walking. Falls when walking resulted in more severe injuries. Patients who fell mainly when standing did not realize they could fall when standing; engaged in inappropriate weight shifting, bending, reaching, and multitasking; and failed to use their assistive devices. Such patients would benefit from being counseled about falling when standing. Patients who fell mainly when walking were aware they could fall, despite using an assisted device, and were more likely to have freezing of gait (FOG). They were more likely to sustain a severe injury, and were more likely to be admitted to an emergency room or hospital. Such patients would benefit from reducing, if possible, FOG. 
    more » « less
  2. The goal of this paper is to use graph theory network measures derived from non-invasive electroencephalography (EEG) to develop neural decoders that can differentiate Parkinson's disease (PD) patients from healthy controls (HC). EEG signals from 27 patients and 27 demographically matched controls from New Mexico were analyzed by estimating their functional networks. Data recorded from the patients during ON and OFF levodopa sessions were included in the analysis for comparison. We used betweenness centrality of estimated functional networks to classify the HC and PD groups. The classifiers were evaluated using leave-one-out cross-validation. We observed that the PD patients (on and off medication) could be distinguished from healthy controls with 89% accuracy – approximately 4% higher than the state-of-the-art on the same dataset. This work shows that brain network analysis using extracranial resting-state EEG can discover patterns of interactions indicative of PD. This approach can also be extended to other neurological disorders. 
    more » « less
  3. The growing demand of industrial, automotive and service robots presents a challenge to the centralized Cloud Robotics model in terms of privacy, security, latency, bandwidth, and reliability. In this paper, we present a ‘Fog Robotics’ approach to deep robot learning that distributes compute, storage and networking resources between the Cloud and the Edge in a federated manner. Deep models are trained on non-private (public) synthetic images in the Cloud; the models are adapted to the private real images of the environment at the Edge within a trusted network and subsequently, deployed as a service for low-latency and secure inference/prediction for other robots in the network. We apply this approach to surface decluttering, where a mobile robot picks and sorts objects from a cluttered floor by learning a deep object recognition and a grasp planning model. Experiments suggest that Fog Robotics can improve performance by sim-to-real domain adaptation in comparison to exclusively using Cloud or Edge resources, while reducing the inference cycle time by 4 to successfully declutter 86% of objects over 213 attempts. 
    more » « less
  4. null (Ed.)
    Abstract Pathological hand tremor (PHT) is a common symptom of Parkinson’s disease (PD) and essential tremor (ET), which affects manual targeting, motor coordination, and movement kinetics. Effective treatment and management of the symptoms relies on the correct and in-time diagnosis of the affected individuals, where the characteristics of PHT serve as an imperative metric for this purpose. Due to the overlapping features of the corresponding symptoms, however, a high level of expertise and specialized diagnostic methodologies are required to correctly distinguish PD from ET. In this work, we propose the data-driven $$\text {NeurDNet}$$ NeurDNet model, which processes the kinematics of the hand in the affected individuals and classifies the patients into PD or ET. $$\text {NeurDNet}$$ NeurDNet is trained over 90 hours of hand motion signals consisting of 250 tremor assessments from 81 patients, recorded at the London Movement Disorders Centre, ON, Canada. The $$\text {NeurDNet}$$ NeurDNet outperforms its state-of-the-art counterparts achieving exceptional differential diagnosis accuracy of $$95.55\%$$ 95.55 % . In addition, using the explainability and interpretability measures for machine learning models, clinically viable and statistically significant insights on how the data-driven model discriminates between the two groups of patients are achieved. 
    more » « less
  5. Abstract

    The PD‐1 immune checkpoint‐based therapy has emerged as a promising therapy strategy for treating the malignant brain tumor glioblastoma (GBM). However, patient response varies in clinical trials, mainly due to the tumor heterogeneity and immunological resistance in the tumor microenvironment. To further understand how mechanistically the niche interplay and competition drive anti‐PD‐1 resistance, an in silico model is established to quantitatively describe the biological rationale of critical GBM‐immune interactions, such as tumor growth and apoptosis, T cell activation and cytotoxicity, and tumor‐associated macrophage (TAM) mediated immunosuppression. Such an in silico experimentation and predictive model, based on the in vitro microfluidic chip‐measured end‐point data and patient‐specific immunological characteristics, allows for a comprehensive and dynamic analysis of multiple TAM‐associated immunosuppression mechanisms against the anti‐PD‐1 immunotherapy. The computational model demonstrates that the TAM‐associated immunosuppression varies in severity across different GBM subtypes, which results in distinct tumor responses. The prediction results indicate that a combination therapy by co‐targeting of PD‐1 checkpoint and TAM‐associated CSF‐1R signaling can enhance the immune responses of GBM patients, especially those patients with mesenchymal GBM who are irresponsive to the single anti‐PD‐1 therapy. The development of a patient‐specific in silicoin vitro GBM model will help navigate and personalize immunotherapies for GBM patients.

     
    more » « less