Abstract Realizing compact and scalable Ising machines that are compatible with CMOS-process technology is crucial to the effectiveness and practicality of using such hardware platforms for accelerating computationally intractable problems. Besides the need for realizing compact Ising spins, the implementation of the coupling network, which describes the spin interaction, is also a potential bottleneck in the scalability of such platforms. Therefore, in this work, we propose an Ising machine platform that exploits the novel behavior of compact bi-stable CMOS-latches (cross-coupled inverters) as classical Ising spins interacting through highly scalable and CMOS-process compatible ferroelectric-HfO 2 -based Ferroelectric FETs (FeFETs) which act as coupling elements. We experimentally demonstrate the prototype building blocks of this system, and evaluate the scaling behavior of the system using simulations. Our work not only provides a pathway to realizing CMOS-compatible designs but also to overcoming their scaling challenges.
more »
« less
Bistable Latch Ising Machines
Ising machines have been attracting attention due to their ability to use mixed discrete/continuous mechanisms to solve difficult combinatorial optimization problems. We present BLIM, a novel Ising machine scheme that uses latches (bistable elements) with controllable gains as Ising spins. We show that networks of coupled latches have a Lyapunov or “energy” function that matches the Ising Hamiltonian in discrete operation, enabling them to function as Ising machines. This result is established in a general coupled-element Ising machine framework that is not limited to BLIM. Operating the latches periodically in analog/continuous mode, during which bistability is removed, helps the system traverse to better minima. CMOS realizations of BLIM have desirable practical features; implementation in other physical domains is an intriguing possibility.
more »
« less
- PAR ID:
- 10334333
- Date Published:
- Journal Name:
- Unconventional Computation and Natural Computation: 19th International Conference, UCNC 2021, Espoo, Finland, October 18–22, 2021, Proceedings
- Page Range / eLocation ID:
- 131-148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonlinear dynamical systems such as coupled oscillators are being actively investigated as Ising machines for solving computationally hard problems in combinatorial optimization. Prior works have established the equivalence between the global minima of the cost function describing the coupled oscillator system and the ground state of the Ising Hamiltonian. However, the properties of the oscillator Ising machine (OIM) from a nonlinear control viewpoint, such as the stability of the OIM solutions, remain unexplored. Therefore, in this work, using nonlinear control-theoretic analysis, we (i) identify the conditions required to ensure the functionality of the coupled oscillators as an Ising machine, (ii) show that all globally optimal phase configurations may not always be stable, resulting in some configurations being more favored over others and, thus, creating a biased OIM, and (iii) elucidate the impact of the stability of locally optimal phase configurations on the quality of the solution computed by the system. Our work, fostered through the unique convergence between nonlinear control theory and analog systems for computing, provides a new toolbox for the design and implementation of dynamical system-based computing platforms.more » « less
-
In this paper, we report new results on a novel Ising machine technology for solving combinatorial optimization problems using networks of coupled self-sustaining oscillators. Specifically, we present several working hardware prototypes using CMOS electronic oscillators, built on bread-boards/perfboards and PCBs, implementing Ising machines consisting of up to 240 spins with programmable couplings. We also report that, just by simulating the differential equations of such Ising machines of larger sizes, good solutions can be achieved easily on benchmark optimization problems, demonstrating the effectiveness of oscillator-based Ising machines.more » « less
-
Abstract A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Booleank-satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines.more » « less
-
Abstract Many combinatorial problems can be mapped to Ising machines, i.e., networks of coupled oscillators that settle to a minimum-energy ground state, from which the problem solution is inferred. This work proposes DROID, a novel event-driven method for simulating the evolution of a CMOS Ising machine to its ground state. The approach is accurate under general delay-phase relations that include the effects of the transistor nonlinearities and is computationally efficient. On a realistic-size all-to-all coupled ring oscillator array, DROID is nearly four orders of magnitude faster than a traditional HSPICE simulation and two orders of magnitude faster than a commercial fast SPICE solver in predicting the evolution of a coupled oscillator system and is demonstrated to attain a similar distribution of solutions as the hardware.more » « less
An official website of the United States government

