Recent work has shown that student trust in their instructor is a key moderator of STEM student buy-in to evidence-based teaching practices (EBTs), enhancing positive student outcomes such as performance, engagement, and persistence. Although trust in instructor has been previously operationalized in related settings, a systematic classification of how undergraduate STEM students perceive trustworthiness in their instructors remains to be developed. Moreover, previous operationalizations impose a structure that often includes distinct domains, such as cognitive and affective trust, that have yet to be empirically tested in the undergraduate STEM context. MethodsTo address this gap, we engage in a multi-step qualitative approach to unify existing definitions of trust from the literature and analyze structured interviews with 57 students enrolled in undergraduate STEM classes who were asked to describe a trusted instructor. Through thematic analysis, we propose that characteristics of a trustworthy instructor can be classified into three domains. We then assess the validity of the three-domain model both qualitatively and quantitatively. First, we examine student responses to determine how traits from different domains are mentioned together. Second, we use a process-model approach to instrument design that leverages our qualitative interview codebook to develop a survey that measures student trust. We performed an exploratory factor analysis on survey responses to quantitatively test the construct validity of our proposed three-domain trust model. Results and discussionWe identified 28 instructor traits that students perceived as trustworthy, categorized into cognitive, affective, and relational domains. Within student responses, we found that there was a high degree of interconnectedness between traits in the cognitive and relational domains. When we assessed the construct validity of the three-factor model using survey responses, we found that a three-factor model did not adequately capture the underlying latent structure. Our findings align with recent calls to both closely examine long-held assumptions of trust dimensionality and to develop context-specific trust measurements. The work presented here can inform the development of a reliable measure of student trust within undergraduate STEM student environments and ultimately improve our understanding of how instructors can best leverage the effectiveness of EBTs for positive student learning outcomes.
more »
« less
Quantifying fear of failure in STEM: modifying and evaluating the Performance Failure Appraisal Inventory (PFAI) for use with STEM undergraduates
Abstract Background The ability to navigate obstacles and embrace iteration following failure is a hallmark of a scientific disposition and is hypothesized to increase students’ persistence in science, technology, engineering, and mathematics (STEM). However, this ability is often not explicitly explored or addressed by STEM instructors. Recent collective interest brought together STEM instructors, psychologists, and education researchers through the National Science Foundation (NSF) research collaborative Factors affecting Learning, Attitudes, and Mindsets in Education network (FLAMEnet) to investigate intrapersonal elements (e.g., individual differences, affect, motivation) that may influence students’ STEM persistence. One such element is fear of failure (FF), a complex interplay of emotion and cognition occurring when a student believes they may not be able to meet the needs of an achievement context. A validated measure for assessing FF, the Performance Failure Appraisal Inventory (PFAI) exists in the psychological literature. However, this measure was validated in community, athletic, and general undergraduate samples, which may not accurately reflect the motivations, experiences, and diversity of undergraduate STEM students. Given the potential role of FF in STEM student persistence and motivation, we felt it important to determine if this measure accurately assessed FF for STEM undergraduates, and if not, how we could improve upon or adapt it for this purpose. Results Using exploratory and confirmatory factor analysis and cognitive interviews, we re-validated the PFAI with a sample of undergraduates enrolled in STEM courses, primarily introductory biology and chemistry. Results indicate that a modified 15-item four-factor structure is more appropriate for assessing levels of FF in STEM students, particularly among those from groups underrepresented in STEM. Conclusions In addition to presenting an alternate factor structure, our data suggest that using the original form of the PFAI measure may significantly misrepresent levels of FF in the STEM context. This paper details our collaborative validation process and discusses implications of the results for choosing, using, and interpreting psychological assessment tools within STEM undergraduate populations.
more »
« less
- Award ID(s):
- 1919953
- PAR ID:
- 10334438
- Date Published:
- Journal Name:
- International Journal of STEM Education
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2196-7822
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundSTEM instructors who leverage student thinking can positively influence student outcomes and build their own teaching expertise. Leveraging student thinking involves using the substance of student thinking to inform instruction. The ways in which instructors leverage student thinking in undergraduate STEM contexts, and what enables them to do so effectively, remains largely unexplored. We investigated how undergraduate STEM faculty leverage student thinking in their teaching, focusing on faculty who engage students in work during class. ResultsFrom analyzing interviews and video of a class lesson for eight undergraduate STEM instructors, we identified a group of instructors who exhibited high levels of leveraging student thinking (high-leveragers) and a group of instructors who exhibited low levels of leveraging student thinking (low-leveragers). High-leveragers behaved as if student thinking was central to their instruction. We saw this in how they accessed student thinking, worked to interpret it, and responded in the moment and after class. High-leveragers spent about twice as much class time getting access to detailed information about student thinking compared to low-leveragers. High-leveragers then altered instructional plans from lesson to lesson and during a lesson based on their interpretation of student thinking. Critically, high-leveragers also drew on much more extensive knowledge of student thinking, a component of pedagogical content knowledge, than did low-leveragers. High-leveragers used knowledge of student thinking to create access to more substantive student thinking, shape real-time interpretations, and inform how and when to respond. In contrast, low-leveragers accessed student thinking less frequently, interpreted student thinking superficially or not at all, and never discussed adjusting the content or problems for the following lesson. ConclusionsThis study revealed that not all undergraduate STEM instructors who actively engage students in work during class are also leveraging student thinking. In other words, not all student-centered instruction is student-thinking-centered instruction. We discuss possible explanations for why some STEM instructors are leveraging student thinking and others are not. In order to realize the benefits of student-centered instruction for undergraduates, we may need to support undergraduate STEM instructors in learning how to learn from their teaching experiences by leveraging student thinking.more » « less
-
Navigating scientific challenges, persevering through difficulties, and coping with failure are considered hallmarks of a successful scientist. However, relatively few studies investigate how undergraduate science, technology, engineering, and mathematics (STEM) students develop these skills and dispositions or how instructors can facilitate this development in undergraduate STEM learning contexts. This is a critical gap, because the unique cultures and practices found in STEM classrooms are likely to influence how students approach challenges and deal with failures, both during their STEM education and in the years that follow. To guide research aimed at understanding how STEM students develop a challenge-engaging disposition and the ability to adaptively cope with failure, we generate a model representing hypotheses of how students might approach challenges and respond to failures in undergraduate STEM learning contexts. We draw from theory and studies investigating mindset, goal orientations, attributions, fear of failure, and coping to inform our model. We offer this model as a tool for the community to test, revise, elaborate, or refute. Finally, we urge researchers and educators to consider the development, implementation, and rigorous testing of interventions aimed at helping students develop a persevering and challenge-engaging disposition within STEM contexts.more » « less
-
First-generation college students and those from ethnic groups such as African Americans, Latinx, Native Americans, or Indigenous Peoples in the United States are less likely to pursue STEM-related professions. How might we develop conceptual and methodological approaches to understand instructional differences between various undergraduate STEM programs that contribute to racial and social class disparities in psychological indicators of academic success such as learning orientations and engagement? Within social psychology, research has focused mainly on student-level mechanisms surrounding threat, motivation, and identity. A largely parallel literature in sociology, meanwhile, has taken a more institutional and critical approach to inequalities in STEM education, pointing to the macro level historical, cultural, and structural roots of those inequalities. In this paper, we bridge these two perspectives by focusing on critical faculty and peer instructor development as targets for inclusive STEM education. These practices, especially when deployed together, have the potential to disrupt the unseen but powerful historical forces that perpetuate STEM inequalities, while also positively affecting student-level proximate factors, especially for historically marginalized students.more » « less
-
Providing hands-on learning experiences increases student understanding of theory and practices in STEM (science, technology, engineering, and mathematics) fields. The experience gives students motivation and allows them to focus their career path towards completing a degree in a STEM field. This paper provides initial observations on the learning impact of community college students and their instructors participating in the Support Center for Microsystems Education 2021 Undergraduate Research Experience. Twenty undergraduate community college students and their instructors participated in a week-long hands-on project-based course in a cleanroom environment. Both students and instructors showed an increase in the level of knowledge regarding microfabricating based on the collected survey results after completing the program. Survey results and observations of participating mentors are presented.more » « less
An official website of the United States government

