skip to main content


Title: Inter‐temporal mutual‐fund management
Abstract

Traditionally, mutual funds are mostly managed via an ad hoc approach, namely a terminal‐only optimization. Due to the intricate mathematical complexity of a continuum of constraints imposed, effects of the inter‐temporal reward for the managers are essentially neglected in the previous literature. For instance, the inter‐temporal optimal investment problem from the fund manager's viewpoint, who earns proportional management fees continuously (a golden rule in practice), has been outstanding for long. This article completely resolves this challenging question especially under generic running and terminal utilities, via the Dynamic Programming Principle which leads to a nonconventional, highly nonlinear HJB equation. We develop an original mathematical analysis to establish the unique existence of the classical solution of the primal problem. Further numerical calibrations and simulations for both the portfolio weight and the value functions illustrate the robustness of the optimal portfolio towards the manager's risk attitude, which allows different managers with various risk characteristics to sell essentially the same investment vehicle. Simulation studies also indicate that the policy of charging a substantial terminal‐only management fee can be replaced by another one with only a negligible amount over the interim period, which substantially reduces the total management fee paid by the clients without lowering the manager's satisfaction at all; this last observation echoes the magic of the alchemy of finance.

 
more » « less
Award ID(s):
1905449
NSF-PAR ID:
10444947
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Mathematical Finance
Volume:
32
Issue:
3
ISSN:
0960-1627
Page Range / eLocation ID:
p. 825-877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this paper is to study the optimal consumption and portfolio choice problem of risk-controlled investors who strive to maximize total expected discounted utility of both consumption and terminal wealth. Risk is measured by the variance of terminal wealth, which introduces a nonlinear function of the expected value into the control problem. The control problem presented is no longer a standard stochastic control problem but rather, a mean field-type control problem. The optimal portfolio and consumption rules are obtained explicitly. Numerical results shed light on the importance of controlling variance risk. The optimal investment policy is nonmyopic, and consumption is not sacrificed. 
    more » « less
  2. Abstract

    The number of large‐scale, high‐severity forest fires occurring in the United States is increasing, as is the cost to suppress these fires. We use a technique developed by William Reed to incorporate the stochasticity of the time of a forest fire into our optimal control problem. Using this optimal control problem, we explore the trade‐offs between prevention management spending and suppression spending, along with the overall economic viability of prevention management spending. Our goal is to determine the optimal prevention management spending rate and the optimal suppression spending, which maximizes the expected value of a forest. We develop a parameter set reflecting the 2011 Las Conchas Fire and numerically solve our optimal control problem. Furthermore, we adapt this problem to simulate a sequence of fires and corresponding controls. Overall, our results support the conclusion that the prevention management efforts offset rising suppression costs and increase the value of a forest.

    Recommendations for Resource Managers

    Increasing wildfire size and increasing federal suppression costs have prompted investigations into alternative methods to help prevent and manage large wildfires.

    Fire prevention lowers the risk of experiencing large fire events, but investment in fire prevention is risky because its benefits are realized at an unknown time in the future.

    Results illustrate that there are real economic costs associated with using funding directed to fire prevention to fund immediate fire suppression.

    In our work with unknown fire sequences, we observe an 88% reduction in suppression spending on average with fire prevention, and a 55% reduction in spending overall.

     
    more » « less
  3. Abstract

    We analyze a family of portfolio management problems under relative performance criteria, for fund managers having CARA or CRRA utilities and trading in a common investment horizon in log‐normal markets. We construct explicit constant equilibrium strategies for both the finite population games and the corresponding mean field games, which we show are unique in the class of constant equilibria. In the CARA case, competition drives agents to invest more in the risky asset than they would otherwise, while in the CRRA case competitive agents may over‐ or underinvest, depending on their levels of risk tolerance.

     
    more » « less
  4. The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellman's principle recently proposed in [23] applied to two particular dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated via numerical examples that include, in particular, the computation of the intermediate mean-risk efficient frontiers.

     
    more » « less
  5. ABSTRACT

    The presented methodology results in an optimal portfolio of resilience‐oriented resource allocation under weather‐related risks. The pre‐event mitigations improve the capacity of the transportation system to absorb shocks from future natural hazards, contributing to risk reduction. The post‐event recovery planning results in enhancing the system's ability to bounce back rapidly, promoting network resilience. Considering the complex nature of the problem due to uncertainty of hazards, and the impact of the pre‐event decisions on post‐event planning, this study formulates a nonlinear two‐stage stochastic programming (NTSSP) model, with the objective of minimizing the direct construction investment and indirect costs in both pre‐event mitigation and post‐event recovery stages. In the model, the first stage prioritizes a bridge group that will be retrofitted or repaired to improve the system's robustness and redundancy. The second stage elaborates the uncertain occurrence of a type of natural hazard with any potential intensity at any possible network location. The damaged state of the network is dependent on decisions made on first‐stage mitigation efforts. While there has been research addressing the optimization of pre‐event or post‐event efforts, the number of studies addressing two stages in the same framework is limited. Even such studies are limited in their application due to the consideration of small networks with a limited number of assets. The NTSSP model addresses this gap and builds a large‐scale data‐driven simulation environment. To effectively solve the NTSSP model, a hybrid heuristic method of evolution strategy with high‐performance parallel computing is applied, through which the evolutionary process is accelerated, and the computing time is reduced as a result. The NTSSP model is implemented in a test‐bed transportation network in Iowa under flood hazards. The results show that the NTSSP model balances the economy and efficiency on risk mitigation within the budgetary investment while constantly providing a resilient system during the full two‐stage course.

     
    more » « less