This paper presents a framework to evaluate the regional and local resilience of infrastructure networks following disruptions from natural hazards. Herein, the regional resilience of a network relates to the accessibility of a community within a larger network, whereas the local resilience concerns the ability of a network to provide its intended service within the boundaries of a community. Using this framework, a methodology is developed to demonstrate its application to a road and highway transportation network disrupted by ground shaking and inundation under a Cascadia Subduction Zone earthquake and tsunami scenario. The regional network extents encompass the entire coast of the US state of Oregon. Embedded within this regional network are 18 local networks associated with coastal communities. Regional and local connectivity indexes are defined to identify the initial damage and then track the postdisaster recovery of the transportation network, i.e., evaluate the network resilience. The study results identify the attributes that lead to a regionally or locally resilient network and highlight the importance of considering local infrastructure networks embedded within larger regional networks. It is shown that without regional considerations, the time to recover may be severely underpredicted. The methodology is further used as a decision support tool to demonstrate how mitigation options impact the transportation network’s resilience. The importance of strategically considering mitigation options is emphasized as some communities see significant reductions in time to recover, whereas others see little to no improvement.
more »
« less
A stochastic programming approach to enhance the resilience of infrastructure under weather‐related risk
ABSTRACT The presented methodology results in an optimal portfolio of resilience‐oriented resource allocation under weather‐related risks. The pre‐event mitigations improve the capacity of the transportation system to absorb shocks from future natural hazards, contributing to risk reduction. The post‐event recovery planning results in enhancing the system's ability to bounce back rapidly, promoting network resilience. Considering the complex nature of the problem due to uncertainty of hazards, and the impact of the pre‐event decisions on post‐event planning, this study formulates a nonlinear two‐stage stochastic programming (NTSSP) model, with the objective of minimizing the direct construction investment and indirect costs in both pre‐event mitigation and post‐event recovery stages. In the model, the first stage prioritizes a bridge group that will be retrofitted or repaired to improve the system's robustness and redundancy. The second stage elaborates the uncertain occurrence of a type of natural hazard with any potential intensity at any possible network location. The damaged state of the network is dependent on decisions made on first‐stage mitigation efforts. While there has been research addressing the optimization of pre‐event or post‐event efforts, the number of studies addressing two stages in the same framework is limited. Even such studies are limited in their application due to the consideration of small networks with a limited number of assets. The NTSSP model addresses this gap and builds a large‐scale data‐driven simulation environment. To effectively solve the NTSSP model, a hybrid heuristic method of evolution strategy with high‐performance parallel computing is applied, through which the evolutionary process is accelerated, and the computing time is reduced as a result. The NTSSP model is implemented in a test‐bed transportation network in Iowa under flood hazards. The results show that the NTSSP model balances the economy and efficiency on risk mitigation within the budgetary investment while constantly providing a resilient system during the full two‐stage course.
more »
« less
- Award ID(s):
- 1751844
- PAR ID:
- 10395224
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer-Aided Civil and Infrastructure Engineering
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 1093-9687
- Page Range / eLocation ID:
- p. 411-432
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computation of optimal recovery decisions for community resilience assurance post-hazard is a combinatorial decision-making problem under uncertainty. It involves solving a large-scale optimization problem, which is significantly aggravated by the introduction of uncertainty. In this paper, we draw upon established tools from multiple research communities to provide an effective solution to this challenging problem. We provide a stochastic model of damage to the water network (WN) within a testbed community following a severe earthquake and compute near-optimal recovery actions for restoration of the water network. We formulate this stochastic decision-making problem as a Markov Decision Process (MDP), and solve it using a popular class of heuristic algorithms known as rollout. A simulation-based representation of MDPs is utilized in conjunction with rollout and the Optimal Computing Budget Allocation (OCBA) algorithm to address the resulting stochastic simulation optimization problem. Our method employs non-myopic planning with efficient use of simulation budget. We show, through simulation results, that rollout fused with OCBA performs competitively with respect to rollout with total equal allocation (TEA) at a meagre simulation budget of 5-10% of rollout with TEA, which is a crucial step towards addressing large-scale community recovery problems following natural disasters.more » « less
-
Public Safety Power Shutoffs (PSPS) are a critical yet disruptive wildfire mitigation strategy used by electric utilities to reduce ignition risk during periods of elevated fire danger. However, current PSPS decisions often lack transparency and consistency, prompting the need for data-driven tools to better understand utility behavior. This paper presents a Support Vector Machine (SVM) framework to model and interpret PSPS decision-making using post-event wildfire reports. Forecast-based weather and fire behavior features are used as model inputs to represent decision-relevant variables reported by utilities. The model is calibrated using Platt scaling for probabilistic interpretability and adapted across utilities using importance- weighted domain adaptation to address feature distribution shifts. A post-hoc clustering segments PSPS events into wildfire risk zones based on ignition risk metrics excluded from model train- ing. Results demonstrate that the proposed framework supports interpretable, transferable analysis of PSPS decisions, offering insight into utility practices and informing more transparent de- energization planning.more » « less
-
Climate change and natural hazards pose great threats to road transport systems which are ‘lifelines’ of human society. However, there is generally a lack of empirical data and approaches for assessing resilience of road networks in real hazard events. This study introduces an empirical approach to evaluate road network resilience using crowdsourced traffic data in Google Maps. Based on the conceptualization of resilience and the Hansen accessibility index, resilience of road network is measured from accumulated accessibility reduction over time during a hazard. The utility of this approach is demonstrated in a case study of the Cleveland metropolitan area (Ohio) in Winter Storm Harper. The results reveal strong spatial variations of the disturbance and recovery rate of road network performance during the hazard. The major findings of the case study are: (1) longer distance travels have higher increasing ratios of travel time during the hazard; (2) communities with low accessibility at the normal condition have lower road network resilience; (3) spatial clusters of low resilience are identified, including communities with low socio-economic capacities. The introduced approach provides ground-truth validation for existing quantitative models and supports disaster management and transportation planning to reduce hazard impacts on road network.more » « less
-
With the increasing frequency and severity of disasters resulting especially from natural hazards and impacting both infrastructure systems and communities, thus challenging their timely recovery, there is a strong need to prepare for more effective response and recovery. Communities have especially struggled to understand the aspects of recovery patterns for different systems and prepare accordingly. Therefore, it is essential to develop models that are able to measure and estimate the recovery trajectory for a certain community or infrastructure network given system characteristics and event information. The objective of the study is to deploy the Poisson Bayesian kernel model developed and tested in earlier work in risk analysis to measure the recovery rate of a system. In this paper, the model is implemented and tested on a resilience modeling case study of power systems. The model is validated using a comparison to other count data models such as Poisson generalized linear model and the negative binomial generalized linear model.more » « less
An official website of the United States government
