skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Roadmap
Precision swine production can benefit from autonomous, noninvasive, and affordable devices that conduct frequent checks on the well-being status of pigs. Here, we present a remote monitoring tool for the objective measurement of some behavioral indicators that may help in assessing the health and welfare status—namely, posture, gait, vocalization, and external temperature. The multiparameter electronic sensor board is characterized by laboratory measurements and by animal tests. Relevant behavioral health indicators are discussed for implementing machine learning algorithms and decision support tools to detect animal lameness, lethargy, pain, injury, and distress. The roadmap for technology adoption is also discussed, along with challenges and the path forward. The presented technology can potentially lead to efficient management of farm animals, targeted focus on sick animals, medical cost savings, and less use of antibiotics.  more » « less
Award ID(s):
1150867
PAR ID:
10334547
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Animals
Volume:
11
Issue:
9
ISSN:
2076-2615
Page Range / eLocation ID:
2665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Quantifying how whole organisms respond to challenges in the external and internal environment (“stressors”) is difficult. To date, physiological ecologists have mostly used measures of glucocorticoids (GCs) to assess the impact of stressors on animals. This is of course too simplistic as Hans Seyle himself characterized the response of organisms to “noxious stimuli” using multiple physiological responses. Possible solutions include increasing the number of biomarkers to more accurately characterize the “stress state” of animal or just measuring different biomarkers to more accurately characterize the degree of acute or chronic stressors an animal is experiencing. We focus on the latter and discuss how heart rate (HR) and heart rate variability (HRV) may be better predictors of the degree of activation of the sympathetic–adrenal–medullary system and complement or even replace measures of GCs as indicators of animal health, welfare, fitness, or their level of exposure to stressors. The miniaturization of biological sensor technology (“bio-sensors” or “bio-loggers”) presents an opportunity to reassess measures of stress state and develop new approaches. We describe some modern approaches to gathering these HR and HRV data in free-living animals with the aim that heart dynamics will be more integrated with measures of GCs as bio-markers of stress state and predictors of fitness in free-living animals. 
    more » « less
  2. Bradfield, John; Meyer, Esmeralda; Norton, John N. (Ed.)
    Institutions with animal care and use programs are obligated to provide for the health and well-being of the animals, but are equally obligated to provide for safety of individuals associated with the program. The topics in this issue of the ILAR Journal, in association with those within the complimentary issue of the Journal of Applied Biosafety, provide a variety of contemporary occupational health and safety considerations in today’s animal research programs. Each article addresses key or emerging occupational health and safety topics in institutional animal care and use programs, where the status of the topic, contemporary challenges, and future directions are provided. 
    more » « less
  3. Abstract Pathogen transmission through wildlife trade has become a significant One Health issue, but businesses involved in trade can take actions to minimize pathogen spread within and beyond trade networks. Such actions could include an industry‐led clean‐trade certification program whereby retailer costs for enhanced biosecurity and disease‐free product certification are offset by increased prices to consumers. However, we currently know little about the demand for, and value of such a program to consumers. With the case of pet amphibian owners in the United States, we assessed what characteristics make people more likely to demand certified wild animals and how much more in price premium they are willing to pay for such animals. Findings suggested that the demand for pathogen‐free amphibians was driven by the perceived risk of pathogen spillover to wild populations, behavioral control in preventing transmission, and other characteristics related to pet ownership and demographics. On average, respondents were willing to pay $38.65 per animal more for certified pathogen‐free amphibians than non‐certified amphibians. Findings lend support for the viability of an industry‐led clean‐trade program aimed at enhancing animal well‐being, increasing customer satisfaction, and reducing the risk of pathogen transmission within and beyond the pet trade network. 
    more » « less
  4. ABSTRACT Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration. 
    more » « less
  5. Sensors in and around the environment becoming ubiquitous has ushered in the concept of smart animal agriculture which has the potential to greatly improve animal health and productivity using the concepts of remote health monitoring which is a necessity in times when there is a great demand for animal products. The data from in and around animals gathered from sensors dwelling in animal agriculture settings have made farms a part of the Internet of Things space. This has led to active research in developing efficient communication methodologies for farm networks. This study focuses on the first hop of any such farm network where the data from inside the body of the animals is to be communicated to a node dwelling outside the body of the animal. In this paper, we use novel experimental methods to calculate the channel loss of signal at sub-GHz frequencies of 100 - 900 MHz to characterize the in-body to out-of-body communication channel in large animals. A first-of-its-kind 3D bovine modeling is done with computer vision techniques for detailed morphological features of the animal body is used to perform Finite Element Method based Electromagnetic simulations. The results of the simulations are experimentally validated to come up with a complete channel modeling methodology for in-body to out-of-body animal body communication. The experimentally validated 3D bovine model is made available publicly on https://github.com/SparcLab/Bovine-FEM-Model.git GitHub. The results illustrate that an in-body to out-of-body communication channel is realizable from the rumen to the collar of ruminants with $$\leq {90}~{\rm dB}$$ path loss at sub-GHz frequencies ( $100-900~MHz$ ) making communication feasible. The developed methodology has been illustrated for ruminants but can also be used for other related in-body to out-of-body studies. Using the developed channel modeling technique, an efficient communication architecture can be formed for in-body to out-of-body communication in animals which paves the way for the design and development of future smart animal agriculture systems. 
    more » « less