skip to main content


Title: Continuous biphasic chemical processes in a four-phase segmented flow reactor
A quaternary segmented flow regime for robust and flexible continuous biphasic chemical processes is introduced and characterized for stability and dynamic properties through over 1500 automatically conducted experiments. The flow format is then used for the continuous flow ligand exchange of cadmium selenide quantum dots under high intensity ultraviolet illumination for improved photoluminescence quantum yield.  more » « less
Award ID(s):
1902702
NSF-PAR ID:
10334596
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Reaction Chemistry & Engineering
Volume:
6
Issue:
8
ISSN:
2058-9883
Page Range / eLocation ID:
1367 to 1375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl3QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl3QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl3QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials.

     
    more » « less
  2. Abstract

    We present a fully continuous chip microreactor‐based multistage platform for the synthesis of quantum dots with heterostructures. The use of custom‐designed chip reactors enables precise control of heating profiles and flow distribution across the microfluidic channels while conducting multistep reactions. The platform can be easily reconfigured by reconnecting the differently designed chip reactors allowing for screening of various reaction parameters during the synthesis of nanocrystals. III–V core/shell quantum dots are chosen as model reaction systems, including InP/ZnS, InP/ZnSe, InP/CdS and InAs/InP, which are prepared in flow using a maximum of six chip reactors in series.

     
    more » « less
  3. Abstract

    We present a fully continuous chip microreactor‐based multistage platform for the synthesis of quantum dots with heterostructures. The use of custom‐designed chip reactors enables precise control of heating profiles and flow distribution across the microfluidic channels while conducting multistep reactions. The platform can be easily reconfigured by reconnecting the differently designed chip reactors allowing for screening of various reaction parameters during the synthesis of nanocrystals. III–V core/shell quantum dots are chosen as model reaction systems, including InP/ZnS, InP/ZnSe, InP/CdS and InAs/InP, which are prepared in flow using a maximum of six chip reactors in series.

     
    more » « less
  4.  
    more » « less
  5. Abstract This article aims to summarize recent and ongoing efforts to simulate continuous-variable quantum systems using flow-based variational quantum Monte Carlo techniques, focusing for pedagogical purposes on the example of bosons in the field amplitude (quadrature) basis. Particular emphasis is placed on the variational real- and imaginary-time evolution problems, carefully reviewing the stochastic estimation of the time-dependent variational principles and their relationship with information geometry. Some practical instructions are provided to guide the implementation of a PyTorch code. The review is intended to be accessible to researchers interested in machine learning and quantum information science. 
    more » « less