Although a vital parameter in many colloidal nanomaterial syntheses, precursor mixing rates are typically inconsistent in batch processes and difficult to separate from reaction time in continuous flow systems. Here, we present a flow chemistry platform that decouples early-stage precursor mixing rates from reaction time (residence time) using solely off-the-shelf, commercially available, and standard dimension components. We then utilize the developed flow chemistry platform towards time- and material-efficient studies of the mass transfer-controlled synthesis of cesium lead bromide perovskite quantum dots.
Continuous biphasic chemical processes in a four-phase segmented flow reactor
A quaternary segmented flow regime for robust and flexible continuous biphasic chemical processes is introduced and characterized for stability and dynamic properties through over 1500 automatically conducted experiments. The flow format is then used for the continuous flow ligand exchange of cadmium selenide quantum dots under high intensity ultraviolet illumination for improved photoluminescence quantum yield.
- Award ID(s):
- 1902702
- Publication Date:
- NSF-PAR ID:
- 10334596
- Journal Name:
- Reaction Chemistry & Engineering
- Volume:
- 6
- Issue:
- 8
- Page Range or eLocation-ID:
- 1367 to 1375
- ISSN:
- 2058-9883
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Because of their enhanced quantum confinement, colloidal two-dimensional Ruddlesden–Popper (RP) perovskite nanosheets with a general formula L 2 [ABX 3 ] n −1 BX 4 stand as a promising narrow-wavelength blue-emitting nanomaterial. Despite ample studies on batch synthesis, for RP perovskites to be broadly applied, continuous synthetic routes are needed. Herein, we design and optimize a flow reactor to continuously produce high-quality n = 1 RP perovskite nanoplatelets. The effects of antisolvent composition, reactor tube length, precursor solution injection rate, and antisolvent injection rate on the morphology and optical properties of the nanoplatelets are systematically examined. Our investigation suggests that flow reactors can be employed to synthesize high-quality L 2 PbX 4 perovskite nanoplatelets ( i.e. , n = 1) at rates greater than 8 times that of batch synthesis. Mass-produced perovskite nanoplatelets promise a variety of potential applications in optoelectronics, including light emitting diodes, photodetectors, and solar cells.
-
Prior mathematical work of Constantin & Iyer ( Commun. Pure Appl. Maths , vol. 61, 2008, pp. 330–345; Ann. Appl. Probab. , vol. 21, 2011, pp. 1466–1492) has shown that incompressible Navier–Stokes solutions possess infinitely many stochastic Lagrangian conservation laws for vorticity, backward in time, which generalize the invariants of Cauchy ( Sciences mathématiques et physique , vol. I, 1815, pp. 33–73) for smooth Euler solutions. We reformulate this theory for the case of wall-bounded flows by appealing to the Kuz'min ( Phys. Lett. A , vol. 96, 1983, pp. 88–90)–Oseledets ( Russ. Math. Surv. , vol. 44, 1989, p. 210) representation of Navier–Stokes dynamics, in terms of the vortex-momentum density associated to a continuous distribution of infinitesimal vortex rings. The Constantin–Iyer theory provides an exact representation for vorticity at any interior point as an average over stochastic vorticity contributions transported from the wall. We point out relations of this Lagrangian formulation with the Eulerian theory of Lighthill (Boundary layer theory. In Laminar Boundary Layers (ed. L. Rosenhead), 1963, pp. 46–113)–Morton ( Geophys. Astrophys. Fluid Dyn. , vol. 28, 1984, pp. 277–308) for vorticity generation at solid walls, and also with a statistical result of Taylor ( Proc. R. Soc.more »
-
Abstract. A closed-path quantum-cascade tunable infrared laserdirect absorption spectrometer (QC-TILDAS) was outfitted with an inertialinlet for filter-less separation of particles and several custom-designedcomponents including an aircraft inlet, a vibration isolation mountingplate, and a system for optionally adding active continuous passivation forgas-phase measurements of ammonia (NH3) from a research aircraft. Theinstrument was then deployed on the NSF/NCAR C-130 aircraft during researchflights and test flights associated with the Western wildfire Experiment forCloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) field campaign.The instrument was configured to measure large, rapid gradients in gas-phaseNH3, over a range of altitudes, in smoke (e.g., ash and particles), inthe boundary layer (e.g., during turbulence and turns), in clouds, and in ahot aircraft cabin (e.g., average aircraft cabin temperatures expected toexceed 30 ∘C during summer deployments). Important designgoals were to minimize motion sensitivity, maintain a reasonable detectionlimit, and minimize NH3 “stickiness” on sampling surfaces to maintainfast time response in flight. The observations indicate that adding ahigh-frequency vibration to the laser objective in the QC-TILDAS andmounting the QC-TILDAS on a custom-designed vibration isolation plate weresuccessful in minimizing motion sensitivity of the instrument during flight.Allan variance analyses indicate that the in-flight precision of theinstrument is 60 ppt at 1 Hz corresponding to a 3σ detectionmore »
-
Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and thenmore »