skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concentrate and Degrade Pfoa with a Photo-Regenerable Composite of In-Doped Tnts@Ac
“Concentrate-and-degrade” is an effective strategy to promote mass transfer and degradation of pollutants in photocatalytic systems, yet suitable and cost-effective photocatalysts are required to practice the new concept. In this study, we doped a post-transition metal of Indium (In) on a novel composite adsorptive photocatalyst, activated carbon-supported titanate nanotubes (TNTs@AC), to effectively degrade perfluorooctanoic acid (PFOA). In/TNTs@AC exhibited both excellent PFOA adsorption (>99% in 30 min) and photodegradation (>99% in 4 h) under optimal conditions (25 °C, pH 7, 1 atm, 1 g/L catalyst, 0.1 mg/L PFOA, 254 nm). The heterojunction structure of the composite facilitated a cooperative adsorption mode of PFOA, i.e., binding of the carboxylic head group of PFOA to the metal oxide and attachment of the hydrophobic tail to AC. The resulting side-on adsorption mode facilitates the electron (e‒) transfer from the carboxylic head to the photogenerated hole (h+), which was the major oxidant verified by scavenger tests. Furthermore, the presence of In enables direct electron transfer and facilitates the subsequent stepwise defluorination. Finally, In/TNTs@AC was amenable to repeated uses in four consecutive adsorption-photodegradation runs. The findings showed that adsorptive photocatalysts can be prepared by hybridization of carbon and photoactive semiconductors and the enabled “concentrate-and-degrade” strategy is promising for the removal and degradation of trace levels of PFOA from polluted waters.  more » « less
Award ID(s):
2041060
PAR ID:
10334623
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
SSRN Electronic Journal
Volume:
300
ISSN:
1556-5068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review provides an overview of the fabrication methods for Ti3C2Tx MXene-based hybrid photocatalysts and evaluates their role in degrading organic dye pollutants. Ti3C2Tx MXene has emerged as a promising material for hybrid photocatalysts due to its high metallic conductivity, excellent hydrophilicity, strong molecular adsorption, and efficient charge transfer. These properties facilitate faster charge separation and minimize electron–hole recombination, leading to exceptional photodegradation performance, long-term stability, and significant attention in dye degradation applications. Ti3C2Tx MXene-based hybrid photocatalysts significantly improve dye degradation efficiency, as evidenced by higher percentage degradation and reduced degradation time compared to conventional semiconducting materials. This review also highlights computational techniques employed to assess and enhance the performance of Ti3C2Tx MXene-based hybrid photocatalysts for dye degradation. It identifies the challenges associated with Ti3C2Tx MXene-based hybrid photocatalyst research and proposes potential solutions, outlining future research directions to address these obstacles effectively. 
    more » « less
  2. The ineffective removal of antibiotics from the aquatic environment has raised serious problems, including chronic toxicity and antibiotic resistance. Among the numerous strategies, photocatalytic degradation appears to be one of the promising methods to remove antibiotics. Semiconductors are the most widely used photocatalysts, whereas, their efficiencies still suffer from limited light absorption and poor charge separation. Given their exceptional properties, including a superior surface area and massive active sites, MOFs are excellent candidates for the formation of hierarchical nanostructures with semiconductors to address the above issues. In this study, highly-oriented one-dimensional (1D) MIL-100(Fe)/TiO 2 nanoarrays were developed as photocatalysts for the first time (MIL = Materials Institute Lavoisier). The 1D structured TiO 2 nanoarrays not only enable the direct and enhanced charge transport, but also permit easy recycling. With the in situ growth of MIL-100(Fe) on the TiO 2 nanoarrays, the composite exhibits enhanced light absorption, electron/hole separation, and accessibility of active sites. As a result, up to 90.79% photodegradation efficiency of tetracycline, a representative antibiotic, by the MIL-100(Fe)/TiO 2 composite nanoarrays was achieved, which is much higher than that of pristine TiO 2 nanoarrays (35.22%). It is also worth mentioning that the composite nanoarrays demonstrate high stability and still exhibit high efficiency twice that of the pristine TiO 2 nanoarrays even in the 5th run. This study offers a new strategy for the degradation of antibiotics by using 1D MOF-based nanocomposite nanoarrays. 
    more » « less
  3. With drinking water regulations forthcoming for per- and polyfluoroalkyl substances (PFAS), the need for cost-effective treatment technologies has become urgent. Adsorption is a key process for removing or concentrating PFAS from water; however, conventional adsorbents operated in packed beds suffer from mass transfer limitations. The objective of this study was to assess the mass transfer performance of a porous polyamide adsorptive membrane for removing PFAS from drinking water under varying conditions. We conducted batch equilibrium and dynamic adsorption experiments for perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluorobutanesulfonic acid, and undecafluoro-2-methyl-3-oxahexanoic acid (i.e., GenX). We assessed various operating and water quality parameters, including flow rate (pore velocity), pH, ionic strength (IS), and presence of dissolved organic carbon. Outcomes revealed that the porous adsorptive membrane was a mass transfer-efficient platform capable of achieving dynamic capacities similar to equilibrium capacities at fast interstitial velocities. The adsorption mechanism of PFAS to the membrane was a mixture of electrostatic and hydrophobic interactions, with pH and IS controlling which interaction was dominant. The adsorption capacity of the membrane was limited by its surface area, but its site density was approximately five times higher than that of granular activated carbon. With advances in molecular engineering to increase the capacity, porous adsorptive membranes are well suited as alternative adsorbent platforms for removing PFAS from drinking water. 
    more » « less
  4. Abstract Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C–H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C–H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C–H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance. 
    more » « less
  5. The interfacial contact between TiO 2 and graphitic carbon in a hybrid composite plays a critical role in electron transfer behavior, and in turn, its photocatalytic efficiency. Herein, we report a new approach for improving the interfacial contact and delaying charge carrier recombination in the hybrid by wrapping short single-wall carbon nanotubes (SWCNTs) on TiO 2 particles (100 nm) via a hydration-condensation technique. Short SWCNTs with an average length of 125 ± 90 nm were obtained from an ultrasonication-assisted cutting process of pristine SWCNTs (1–3 μm in length). In comparison to conventional TiO 2 –SWCNT composites synthesized from long SWCNTs (1.2 ± 0.7 μm), TiO 2 wrapped with short SWCNTs showed longer lifetimes of photogenerated electrons and holes, as well as a superior photocatalytic activity in the gas-phase degradation of acetaldehyde. In addition, upon comparison with a TiO 2 –nanographene “quasi-core–shell” structure, TiO 2 -short SWCNT structures offer better electron-capturing efficiency and slightly higher photocatalytic performance, revealing the impact of the dimensions of graphitic structures on the interfacial transfer of electrons and light penetration to TiO 2 . The engineering of the TiO 2 –SWCNT structure is expected to benefit photocatalytic degradation of other volatile organic compounds, and provide alternative pathways to further improve the efficiency of other carbon-based photocatalysts. 
    more » « less