Combined heavy metals and chlorinated organic compounds have been widely reported in industrial wastewater. Yet, simultaneous removal of these contaminants remains challenging. In this study, a bi-functional composite (TNTs@AC) was prepared based on commercial titanium dioxide (TiO2) and activated carbon (AC) and tested for simultaneous removal of Cd(II) and 2-chlorophenol (2-CP). Under the action of high temperature and pressure, TiO2 was transformed into titanate nanotubes (TNTs) and bound to AC, and in the meanwhile, nanoscale AC particles were patched on the TNTs. In the mixed TNTs and AC phases, TNTs was responsible for taking up Cd(II), whereas AC for 2-CP. As such, the relative adsorption capacities of the composite for Cd(II) and 2-CP varied with the mass ratio of TiO2:AC, with decent uptakes for both chemicals in the mass ratio rage of 1:3 ~1:1. TNTs@AC (prepared at TiO2:AC = 1:1) demonstrated fast sorption kinetics and high sorption capacities for both Cd(II) and 2-CP, with a maximum Langmuir adsorption capacity of 109 and 52 mg/g, respectively, in the single solute
more »
« less
Concentrate and Degrade Pfoa with a Photo-Regenerable Composite of In-Doped Tnts@Ac
“Concentrate-and-degrade” is an effective strategy to promote mass transfer and degradation of pollutants in photocatalytic systems, yet suitable and cost-effective photocatalysts are required to practice the new concept. In this study, we doped a post-transition metal of Indium (In) on a novel composite adsorptive photocatalyst, activated carbon-supported titanate nanotubes (TNTs@AC), to effectively degrade perfluorooctanoic acid (PFOA). In/TNTs@AC exhibited both excellent PFOA adsorption (>99% in 30 min) and photodegradation (>99% in 4 h) under optimal conditions (25 °C, pH 7, 1 atm, 1 g/L catalyst, 0.1 mg/L PFOA, 254 nm). The heterojunction structure of the composite facilitated a cooperative adsorption mode of PFOA, i.e., binding of the carboxylic head group of PFOA to the metal oxide and attachment of the hydrophobic tail to AC. The resulting side-on adsorption mode facilitates the electron (e‒) transfer from the carboxylic head to the photogenerated hole (h+), which was the major oxidant verified by scavenger tests. Furthermore, the presence of In enables direct electron transfer and facilitates the subsequent stepwise defluorination. Finally, In/TNTs@AC was amenable to repeated uses in four consecutive adsorption-photodegradation runs. The findings showed that adsorptive photocatalysts can be prepared by hybridization of carbon and photoactive semiconductors and the enabled “concentrate-and-degrade” strategy is promising for the removal and degradation of trace levels of PFOA from polluted waters.
more »
« less
- PAR ID:
- 10334623
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- SSRN Electronic Journal
- Volume:
- 300
- ISSN:
- 1556-5068
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This review provides an overview of the fabrication methods for Ti3C2Tx MXene-based hybrid photocatalysts and evaluates their role in degrading organic dye pollutants. Ti3C2Tx MXene has emerged as a promising material for hybrid photocatalysts due to its high metallic conductivity, excellent hydrophilicity, strong molecular adsorption, and efficient charge transfer. These properties facilitate faster charge separation and minimize electron–hole recombination, leading to exceptional photodegradation performance, long-term stability, and significant attention in dye degradation applications. Ti3C2Tx MXene-based hybrid photocatalysts significantly improve dye degradation efficiency, as evidenced by higher percentage degradation and reduced degradation time compared to conventional semiconducting materials. This review also highlights computational techniques employed to assess and enhance the performance of Ti3C2Tx MXene-based hybrid photocatalysts for dye degradation. It identifies the challenges associated with Ti3C2Tx MXene-based hybrid photocatalyst research and proposes potential solutions, outlining future research directions to address these obstacles effectively.more » « less
-
The ineffective removal of antibiotics from the aquatic environment has raised serious problems, including chronic toxicity and antibiotic resistance. Among the numerous strategies, photocatalytic degradation appears to be one of the promising methods to remove antibiotics. Semiconductors are the most widely used photocatalysts, whereas, their efficiencies still suffer from limited light absorption and poor charge separation. Given their exceptional properties, including a superior surface area and massive active sites, MOFs are excellent candidates for the formation of hierarchical nanostructures with semiconductors to address the above issues. In this study, highly-oriented one-dimensional (1D) MIL-100(Fe)/TiO 2 nanoarrays were developed as photocatalysts for the first time (MIL = Materials Institute Lavoisier). The 1D structured TiO 2 nanoarrays not only enable the direct and enhanced charge transport, but also permit easy recycling. With the in situ growth of MIL-100(Fe) on the TiO 2 nanoarrays, the composite exhibits enhanced light absorption, electron/hole separation, and accessibility of active sites. As a result, up to 90.79% photodegradation efficiency of tetracycline, a representative antibiotic, by the MIL-100(Fe)/TiO 2 composite nanoarrays was achieved, which is much higher than that of pristine TiO 2 nanoarrays (35.22%). It is also worth mentioning that the composite nanoarrays demonstrate high stability and still exhibit high efficiency twice that of the pristine TiO 2 nanoarrays even in the 5th run. This study offers a new strategy for the degradation of antibiotics by using 1D MOF-based nanocomposite nanoarrays.more » « less
-
Abstract Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C–H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C–H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C–H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance.more » « less
-
Abstract Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy’s superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy.more » « less
An official website of the United States government

