skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low temperature sensitivity of picophytoplankton P:B ratios and growth rates across a natural 10°C temperature gradient in the oligotrophic Indian Ocean
We investigated temperature sensitivities of picophytoplankton growth along a natural 10°C (18-28°C) temperature gradient in the eastern Indian Ocean characterized by deep mixing and consistently low dissolved nitrogen. Population biomass (B), cell carbon and chlorophyll were measured by flow cytometry. Instantaneous growth (µ) and production (P) were calculated from dilution incubations at four light levels. Contrary to most empirical and theoretical predictions, Prochlorococcus, the biomass dominant, showed insignificant temperature sensitivity, with nominal Q10 values of 1.06 and 1.18 for P:B and µ, respectively, and activation energies (Ea) of 0.05 and 0.12 eV. Q10 and Ea values for Synechococcus (1.36-1.42 and 0.23-0.27 eV) were also below prediction, and picoeukaryotes showed high variability, including negative rates suggesting lytic cycles, at high temperature. We emphasize the importance of using adapted communities in natural environmental gradients to test climate predictions and hypothesize that mortality defenses are a significant selection criterion in balanced oligotrophic systems.  more » « less
Award ID(s):
1851558
PAR ID:
10334678
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Limnology and oceanography letters
Volume:
7
ISSN:
2378-2242
Page Range / eLocation ID:
112–121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Q10 coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, biogeochemists and ecologists have long recognized that a constant Q10 coefficient does not describe the temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the constant Q10 assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation results to the predictions with Q10 coefficients. By accounting for the reactions of extracellular enzymes, mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical reaction model reproduces the observations of previous laboratory incubation experiments, including the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter decomposition. The modeling results illustrate the oversimplification inherent in the constant Q10 assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential relationship given by the Q10 coefficient. As a result, the constant Q10 approach tends to underestimate the rates of organic matter decomposition within the temperature ranges where Q10 values are determined, and overestimate the rates outside the temperature ranges. The results also show how biogeochemical reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity of organic matter decomposition arising from underlying catalytic mechanisms. 
    more » « less
  2. ABSTRACT Physiology defines individual responses to global climate change and species distributions across environments. Physiological responses are driven by temperature on three time scales: acute, acclimatory and evolutionary. Acutely, passive temperature effects often dictate an expected 2-fold increase in metabolic processes for every 10°C change in temperature (Q10). Yet, these acute responses often are mitigated through acclimation within an individual or evolutionary adaptation within populations over time. Natural selection can influence both responses and often reduces interindividual variation towards an optimum. However, this interindividual physiological variation is not well characterized. Here, we quantified responses to a 16°C temperature difference in six physiological traits across nine thermally distinct Fundulus heteroclitus populations. These traits included whole-animal metabolism (WAM), critical thermal maximum (CTmax) and substrate-specific cardiac metabolism measured in approximately 350 individuals. These traits exhibited high variation among both individuals and populations. Thermal sensitivity (Q10) was determined, specifically as the acclimated Q10, in which individuals were both acclimated and assayed at each temperature. The interindividual variation in Q10 was unexpectedly large: ranging from 0.6 to 5.4 for WAM. Thus, with a 16°C difference, metabolic rates were unchanged in some individuals, while in others they were 15-fold higher. Furthermore, a significant portion of variation was related to habitat temperature. Warmer populations had a significantly lower Q10 for WAM and CTmax after acclimation. These data suggest that individual variation in thermal sensitivity reflects different physiological strategies to respond to temperature variation, providing many different adaptive responses to changing environments. 
    more » « less
  3. Sea spray aerosol contains ice-nucleating particles (INPs), which affect the formation and properties of clouds. Here, we show that aerosols emitted from fast-growing marine phytoplankton produce effective immersion INPs, which nucleate at temperatures significantly warmer than the atmospheric homogeneous freezing (−38.0 ∘C) of pure water. Aerosol sampled over phytoplankton cultures grown in a Marine Aerosol Reference Tank (MART) induced nucleation and freezing at temperatures as high as −15.0 ∘C during exponential phytoplankton growth. This was observed in monospecific cultures representative of two major groups of phytoplankton, namely a cyanobacterium (Synechococcus elongatus) and a diatom (Thalassiosira weissflogii). Ice nucleation occurred at colder temperatures (−28.5 ∘C and below), which were not different from the freezing temperatures of procedural blanks, when the cultures were in the stationary or death phases of growth. Ice nucleation at warmer temperatures was associated with relatively high values of the maximum quantum yield of photosystem II (ΦPSII), an indicator of the physiological status of phytoplankton. High values of ΦPSII indicate the presence of cells with efficient photochemistry and greater potential for photosynthesis. For comparison, field measurements in the North Atlantic Ocean showed that high net growth rates of natural phytoplankton assemblages were associated with marine aerosol that acted as effective immersion INPs at relatively warm temperatures. Data were collected over 4 d at a sampling station maintained in the same water mass as the water column stabilized after deep mixing by a storm. Phytoplankton biomass and net phytoplankton growth rate (0.56 d−1) were greatest over the 24 h preceding the warmest mean ice nucleation temperature (−25.5 ∘C). Collectively, our laboratory and field observations indicate that phytoplankton physiological status is a useful predictor of effective INPs and more reliable than biomass or taxonomic affiliation. Ocean regions associated with fast phytoplankton growth, such as the North Atlantic during the annual spring bloom, may be significant sources of atmospheric INPs. 
    more » « less
  4. p-Type molecular dopants are a class of high electron affinity (EA) molecules used to ionize organic electronic materials for device applications. It is extremely challenging to ionize high-performance, high-ionization energy (IE) polymers because the dopant molecule needs to be compatible with solution processing. Here, we describe the synthesis and characterization of two new solution processable molecular dopants with the highest EA values yet reported. These molecules, based on the parent hexacyanotrimethylenecyclopropane (CN6-CP) structure, achieve solubility by the substitution of one or more of the cyano groups with esters, which both reduces the volatility relative to CN6-CP and allows for solution processing. The efficacy of these new molecular dopants, which have EA values up to 5.75 eV with respect to vacuum, was tested by performing sequential solution doping experiments with a series of thiophene and alternating diketopyrrolopyrrole polymers with IEs ranging from 5.10 eV to 5.63 eV. For completeness, the new dopant results are compared to a previously reported tri-ester substituted CN6-CP analogue with an EA of 5.50 EV. The increased EA of these stronger dopants induces a 10–100 fold increase in film conductivity and saturation of the conductivity at 15–100 S cm −1 for almost all polymers tested. These new dopant structures enable controlled solution doping at high doping levels for most alternating co-polymers of interest to the organic electronics community. 
    more » « less
  5. Abstract Understanding the observed temperature dependence of decomposition (i.e., its apparent activation energy) requires separation of direct effects of temperature on consumer metabolism (i.e., the inherent activation energy) from those driven by indirect seasonal patterns in phenology and biomass, and by longer‐term, climate‐driven shifts in acclimation, adaptation, and community assembly. Such parsing is important because studies that relate temperature to decomposition usually involve multi‐season data and/or spatial proxies for long‐term shifts, and so incorporate these indirect factors. The various effects of such factors can obscure the inherent temperature dependence of detrital processing. Separating the inherent temperature dependence of decomposition from other drivers is important for accurate prediction of the contribution of detritus‐sourced greenhouse gases to climate warming and requires novel approaches to data collection and analysis. Here, we present breakdown rates of red maple litter incubated in coarse‐ and fine‐mesh litterbags (the latter excluding macroinvertebrates) for serial approximately one‐month increments over one year in nine streams along a natural temperature gradient (mean annual: 12.8°–16.4°C) from north Georgia to central Alabama, USA. We analyzed these data using distance‐based redundancy analysis and generalized additive mixed models to parse the dependence of decomposition rates on temperature, seasonality, and shredding macroinvertebrate biomass. Microbial decomposition in fine‐mesh bags was significantly influenced by both temperature and seasonality. Accounting for seasonality corrected the temperature dependence of decomposition rate from 0.25 to 0.08 eV. Shredder assemblage structure in coarse‐mesh bags was related to temperature across both sites and seasons, shifting from “cold” stonefly‐dominated communities to “warm” communities dominated by snails or crayfish. Shredder biomass was not a significant predictor of either coarse‐mesh or macroinvertebrate‐mediated (i.e., coarse‐ minus fine‐mesh) breakdown rates, which were also jointly influenced by temperature and seasonality. Unlike fine‐mesh bags, however, temperature dependence of litter breakdown did not differ between models with and without seasonality for either coarse‐mesh (0.36 eV) or macroinvertebrate‐mediated (0.13 eV) rates. We conclude that indirect (non‐thermal) seasonal and site‐level effects play a variable and potentially strong role in shaping the apparent temperature dependence of detrital breakdown. Such effects should be incorporated into studies designed to estimate inherent temperature dependence of slow ecological processes. 
    more » « less