- Award ID(s):
- 2018740
- Publication Date:
- NSF-PAR ID:
- 10334849
- Journal Name:
- Dalton Transactions
- ISSN:
- 1477-9226
- Sponsoring Org:
- National Science Foundation
More Like this
-
Reported herein are the two new series of diruthenium aryl compounds: Ru 2 (DiMeOap) 4 (Ar) (1a–6a) (DiMeOap = 2-(3,5-dimethoxyanilino)pyridinate) and Ru 2 ( m - i PrOap) 4 (Ar) (1b–5b) ( m - i PrOap = 2-(3-iso-propoxyanilino)pyridinate), prepared through the lithium-halogen exchange reaction with a variety of aryl halides (Ar = C 6 H 4 -4-NMe 2 (1), C 6 H 4 -4- t Bu (2), C 6 H 4 -4-OMe (3), C 6 H 3 -3,5-(OMe) 2 (4), C 6 H 4 -4-CF 3 (5), C 6 H 5 (6)). The molecular structures of these compounds were established with X-ray diffraction studies. Additionally, these compounds were characterized using electronic absorption and voltammetric techniques. Compounds 1a–6a and 1b–5b are all in the Ru 2 5+ oxidation state, with a ground state configuration of σ 2 π 4 δ 2 (π*δ*) 3 ( S = 3/2). Use of the modified ap ligands (ap′) resulted in moderate increases of product yield when compared to the unsubstituted Ru 2 (ap) 4 (Ar) (ap = 2-anilinopyridinate) series. Comparisons of the electrochemical properties of 1a–6a and 1b–5b against the Ru 2 (ap′)Cl starting material reveals the addition of the aryl ligand cathodically shifted themore »
-
Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and inmore »
-
Abstract Reduction of d2metal–oxo ions of the form [MO(PP)2Cl]+(M=Mo, W; PP=chelating diphosphine) produces d3MO(PP)2Cl complexes, which include the first isolated examples in group 6. The stability and reactivity of the MO(PP)2Cl compounds are found to depend upon the steric bulk of the phosphine ligands: derivatives with bulky phosphines that shield the oxo ligand are stable enough to be isolated, whereas those with phosphines that leave the oxo ligand exposed are more reactive and observed transiently. Magnetic measurements and DFT calculations on MoO(dppe)2Cl indicate the d3compounds are low spin with a2[(d
xy )2(π*(MoO))1] configuration. X‐ray crystallographic and vibrational‐spectroscopic studies on d2and d3[MoO(dppe)2Cl]0/+establish that the d3compound possesses a reduced M−O bond order and significantly longer Mo−O bond, accounting for its greater reactivity. These results indicate that the oxo‐centered reactivity of d3complexes may be controlled through ligand variation. -
Abstract Reduction of d2metal–oxo ions of the form [MO(PP)2Cl]+(M=Mo, W; PP=chelating diphosphine) produces d3MO(PP)2Cl complexes, which include the first isolated examples in group 6. The stability and reactivity of the MO(PP)2Cl compounds are found to depend upon the steric bulk of the phosphine ligands: derivatives with bulky phosphines that shield the oxo ligand are stable enough to be isolated, whereas those with phosphines that leave the oxo ligand exposed are more reactive and observed transiently. Magnetic measurements and DFT calculations on MoO(dppe)2Cl indicate the d3compounds are low spin with a2[(d
xy )2(π*(MoO))1] configuration. X‐ray crystallographic and vibrational‐spectroscopic studies on d2and d3[MoO(dppe)2Cl]0/+establish that the d3compound possesses a reduced M−O bond order and significantly longer Mo−O bond, accounting for its greater reactivity. These results indicate that the oxo‐centered reactivity of d3complexes may be controlled through ligand variation. -
The bis(aminophenol) 2,2′-biphenylbis(3,5-di- tert -butyl-2-hydroxyphenylamine) (ClipH 4 ) forms trans -(Clip)Os(py) 2 upon aerobic reaction of the ligand with {( p -cymene)OsCl 2 } 2 in the presence of pyridine and triethylamine. A more oxidized species, cis -β-(Clip)Os(OCH 2 CH 2 O), is formed from reaction of the ligand with the osmium( vi ) complex OsO(OCH 2 CH 2 O) 2 , and reacts with Me 3 SiCl to give the chloro complex cis -β-(Clip)OsCl 2 . Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3′,5′-di- tert -butyl-2′-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH 6 ) on aerobic reaction with divalent metal precursors. The complexes’ structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmiummore »