skip to main content


Title: Impact of varying side chain structure on organic electrochemical transistor performance: a series of oligoethylene glycol-substituted polythiophenes
The electrochemical doping/dedoping kinetics, and the organic electrochemical transistor (OECT) performance of a series of polythiophene homopolymers with ethylene glycol units in their side chains using both kosmotropic and chaotropic anion solutions were studied. We compare their performance to a reference polymer, the polythiophene derivative with diethylene glycol side chains, poly(3-{[2-(2-methoxyethoxy)ethoxy]methyl}thiophene-2,5-diyl) (P3MEEMT). We find larger OECT material figure of merit, μC *, where μ is the carrier mobility and C * is the volumetric capacitance, and faster doping kinetics with more oxygen atoms on the side chains, and if the oxygen atom is farther from the polythiophene backbone. Replacing the oxygen atom close to the polythiophene backbone with an alkyl unit increases the film π-stacking crystallinity (higher electronic conductivity in the undoped film) but sacrifices the available doping sites (lower volumetric capacitance C * in OECT). We show that this variation in C * is the dominant factor in changing the μC * product for this family of polymers. With more oxygen atoms on the side chain, or with the oxygen atom farther from the polymer backbone, we observe both more passive swelling and higher C *. In addition, we show that, compared to the doping speed, the dedoping speed, as measured via spectroelectrochemistry, is both generally faster and less dependent on ion species or side chain oxygen content. Last, through OECT, electrochemical impedance spectroscopy (EIS) and spectroelectrochemistry measurements, we show that the chaotropic anion PF 6 − facilitates higher doping levels, faster doping kinetics, and lower doping thresholds compared to the kosmotropic anion Cl − , although the exact differences depend on the polymer side chains. Our results highlight the importance of balancing μ and C * when designing molecular structures for OECT active layers.  more » « less
Award ID(s):
2003456
NSF-PAR ID:
10334887
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
10
Issue:
19
ISSN:
2050-7488
Page Range / eLocation ID:
10738 to 10749
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper( i )-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water: super CAs [Fe(CN) 6 ] 3− and [Fe(CN)6] 4− , moderate CAs PF 6 − and ClO 4 − , weak CA I − , and for comparison, kosmotropic anion SO 4 2− . At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I − and SO 4 2− had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release. 
    more » « less
  2. Abstract

    Four glycolated polythiophene‐based organic mixed ionic‐electronic conductors (OMIECs), PE2gTT, PE2gT, PT2gTT, and PT2gT are prepared by atom‐efficient direct arylation polymerization, avoiding the need for toxic organometallic precursors. PE2gT, PT2gTT, and PT2gT are operable in p‐type accumulation mode organic electrochemical transistors (OECTs), with PT2gT displaying the best device performance with a µC*product figure‐of‐merit of 290 F cm−1 V−1 s−1. A record volumetric capacitance among p‐type glycolated polythiophene OMIECs of 313 F cm−3is observed forPE2gT, ascribed to the high proportionality of polar components in its materials design. The good OECT performance ofPE2gTwith µC*= 84.2 F cm−1 V−1 s−1, comparable with state‐of‐the‐art poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) devices, coupled with its synthetic accessibility and favorable accumulation mode operation makesPE2gTan ideal glycolated alternative to PEDOT:PSS in bioelectronics.PE2gTwith the least negative threshold voltage also displays the best OECT operational cycling stability, linked to better resistance of its oxidized state against parasitic redox side reactions . Shelf life stability of OECTs stored (without bias) is observed to be better for materials with a more negative threshold voltage and higher average molecular weight (PT2gT), that are less susceptible to ambient auto‐oxidation and film delamination.

     
    more » « less
  3. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  4. Abstract

    Organic mixed ionic–electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low‐cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n‐dopant, tetrabutylammonium hydroxide (TBA‐OH), and identifying a new design consideration underpinning its success. TBA‐OH behaves as both a chemical n‐dopant and morphology additive in donor acceptor co‐polymer naphthodithiophene diimide‐based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+counterion adopts an “edge‐on” location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped‐OECTs and doped‐OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.

     
    more » « less
  5. Abstract

    Organic electrochemical transistors (OECTs) are the building blocks of biosensors, neuromorphic devices, and complementary circuits. One rule in the materials design for OECTs is the inclusion of a hydrophilic component in the chemical structure to enable ion transport in the film. Here, it is shown that the ladder‐type, side‐chain free polymer poly(benzimidazobenzophenanthroline) (BBL) performs significantly better in OECTs than the donor–acceptor type copolymer bearing hydrophilic ethylene glycol side chains (P‐90). A combination of electrochemical techniques reveals that BBL exhibits a more efficient ion‐to‐electron coupling and higher OECT mobility than P‐90. In situ atomic force microscopy scans evidence that BBL, which swells negligibly in electrolytes, undergoes a drastic and permanent change in morphology upon electrochemical doping. In contrast, P‐90 substantially swells when immersed in electrolytes and shows moderate morphology changes induced by dopant ions. Ex situ grazing incidence wide‐angle X‐ray scattering suggests that the particular packing of BBL crystallites is minimally affected after doping, in contrast to P‐90. BBL's ability to show exceptional mixed transport is due to the crystallites’ connectivity, which resists water uptake. This side chain‐free route for the design of mixed conductors could bring the n‐type OECT performance closer to the bar set by their p‐type counterparts.

     
    more » « less