Gravitationalwave (GW) detections of merging neutron star–black hole (NSBH) systems probe astrophysical neutron star (NS) and black hole (BH) mass distributions, especially at the transition between NS and BH masses. Of particular interest are the maximum NS mass, minimum BH mass, and potential mass gap between them. While previous GW population analyses assumed all NSs obey the same maximum mass, if rapidly spinning NSs exist, they can extend to larger maximum masses than nonspinning NSs. In fact, several authors have proposed that the ∼2.6
This content will become publicly available on May 31, 2023
 Publication Date:
 NSFPAR ID:
 10334893
 Journal Name:
 The Astrophysical Journal
 Volume:
 931
 Issue:
 2
 Page Range or eLocationID:
 108
 ISSN:
 0004637X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract M _{⊙}object in the event GW190814—either the most massive NS or least massive BH observed to date—is a rapidly spinning NS. We therefore infer the NSBH mass distribution jointly with the NS spin distribution, modeling the NS maximum mass as a function of spin. Using four LIGO–Virgo NSBH events including GW190814, if we assume that the NS spin distribution is uniformly distributed up to the maximum (breakup) spin, we infer the maximum nonspinning NS mass is (90% credibility), while assuming only nonspinning NSs, the NS maximum mass must be >2.53 ${2.7}_{0.4}^{+0.5}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$M _{⊙}(90% credibility). The data support the mass gap’s existence, with a minimum BH mass at . With future observations, under simplified assumptions, 150more » ${5.4}_{1.0}^{+0.7}{M}_{\odot}$ 
Abstract Gravitationalwave (GW) detections of binary black hole (BH) mergers have begun to sample the cosmic BH mass distribution. The evolution of single stellar cores predicts a gap in the BH mass distribution due to pairinstability supernovae (PISNe). Determining the upper and lower edges of the BH mass gap can be useful for interpreting GW detections of merging BHs. We use
MESA to evolve single, nonrotating, massive helium cores with a metallicity ofZ = 10^{−5}, until they either collapse to form a BH or explode as a PISN, without leaving a compact remnant. We calculate the boundaries of the lower BH mass gap for Sfactors in the range S(300 keV) = (77,203) keV b, corresponding to the ±3σ uncertainty in our highresolution tabulated^{12}C(α ,γ )^{16}O reaction rate probability distribution function. We extensively test temporal and spatial resolutions for resolving the theoretical peak of the BH mass spectrum across the BH mass gap. We explore the convergence with respect to convective mixing and nuclear burning, finding that significant time resolution is needed to achieve convergence. We also test adopting a minimum diffusion coefficient to help lowerresolution models reach convergence. We establish a new lower edge of the upper mass gap asM _{lower}≃ ${60}_{14}^{+32}$M _{⊙}from the ±3σ uncertainty inmore » 
ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs are $\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is ${R}_{\mathrm{ BH}\!\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{3}\, \rm {yr}^{1},({\mathit{ R}}_{NS\!\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{3}\, \rm {yr}^{1}$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratiosmore »

ABSTRACT The progenitor system of the compact binary merger GW190425 had a total mass of $3.4^{+0.3}_{0.1}$ M⊙ (90thpercentile confidence region) as measured from its gravitational wave signal. This mass is significantly different from the Milky Way (MW) population of binary neutron stars (BNSs) that are expected to merge in a Hubble time and from that of the first BNS merger, GW170817. Here, we explore the expected electromagnetic (EM) signatures of such a system. We make several astrophysically motivated assumptions to further constrain the parameters of GW190425. By simply assuming that both components were NSs, we reduce the possible component masses significantly, finding $m_{1}=1.85^{+0.27}_{0.19}$ M⊙ and $m_{2}=1.47^{+0.16}_{0.18}$ M⊙. However, if the GW190425 progenitor system was an NS–black hole (BH) merger, we find bestfitting parameters $m_{1}=2.19^{+0.21}_{0.17}$ M⊙ and $m_{2}=1.26^{+0.10}_{0.08}$ M⊙. For a wellmotivated BNS system where the lighter NS has a mass similar to the mass of nonrecycled NSs in MW BNS systems, we find $m_{1}=2.03^{+0.15}_{0.14}$ M⊙ and m2 = 1.35 ± 0.09 M⊙, corresponding to only 7 per cent mass uncertainties. For all scenarios, we expect a prompt collapse of the resulting remnant to a BH. Examining detailed models with component masses similar to our bestfitting results, we find the EM counterpart to GW190425 is expected to be significantly redder and fainter thanmore »

Abstract The LIGO–Virgo–KAGRA Collaboration recently detected gravitational waves (GWs) from the merger of black hole–neutron star (BHNS) binary systems GW200105 and GW200115. No coincident electromagnetic (EM) counterparts were detected. While the mass ratio and BH spin in both systems were not sufficient to tidally disrupt the NS outside the BH event horizon, other, magnetospheric mechanisms for EM emission exist in this regime and depend sensitively on the NS magnetic field strength. Combining GW measurements with EM flux upper limits, we place upper limits on the NS surface magnetic field strength above which magnetospheric emission models would have generated an observable EM counterpart. We consider fireball models powered by the black hole battery mechanism, where energy is output in gamma rays over ≲1 s. Consistency with no detection by FermiGBM or INTEGRAL SPIACS constrains the NS surface magnetic field to ≲10^{15}G. Hence, joint GW detection and EM upper limits rule out the theoretical possibility that the NSs in GW200105 and GW200115, and the putative NS in GW190814, retain dipolar magnetic fields ≳10^{15}G until merger. They also rule out formation scenarios where strongly magnetized magnetars quickly merge with BHs. We alternatively rule out operation of the BHbatterypowered fireball mechanism in these systems.more »