skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Stable and transient isotopic trends in the crustal evolution of Zealandia Cordillera
Abstract We present >500 zircon δ18O and Lu-Hf isotope analyses on previously dated zircons to explore the interplay between spatial and temporal magmatic signals in Zealandia Cordillera. Our data cover ~8500 km2 of middle and lower crust in the Median Batholith (Fiordland segment of Zealandia Cordillera) where Mesozoic arc magmatism along the paleo-Pacific margin of Gondwana was focused along an ~100 km wide, arc-parallel zone. Our data reveal three spatially distinct isotope domains that we term the eastern, central, and western isotope domains. These domains parallel the Mesozoic arc-axis, and their boundaries are defined by major crustal-scale faults that were reactivated as ductile shear zones during the Early Cretaceous. The western isotope domain has homogenous, mantle-like δ 18O (Zrn) values of 5.8 ± 0.3‰ (2 St.dev.) and initial εHf (Zrn) values of +4.2 ± 1.0 (2 St.dev.). The eastern isotope domain is defined by isotopically low and homogenous δ18O (Zrn) values of 3.9 ± 0.2‰ and initial εHf values of +7.8 ± 0.6. The central isotope domain is characterized by transitional isotope values that display a strong E-W gradient with δ18O (Zrn) values rising from 4.6 to 5.9‰ and initial εHf values decreasing from +5.5 to +3.7. We find that the isotope architecture of the Median Batholith was in place before the initiation of Mesozoic arc magmatism and pre-dates Early Cretaceous contractional deformation and transpression. Our data show that Mesozoic pluton chemistry was controlled in part by long-lived, spatially distinct isotope domains that extend from the crust through to the upper mantle. Isotope differences between these domains are the result of the crustal architecture (an underthrusted low-δ18O source terrane) and a transient event beginning at ca. 129 Ma that primarily involved a depleted-mantle component contaminated by recycled trench sediments (10–20%). When data showing the temporal and spatial patterns of magmatism are integrated, we observe a pattern of decreasing crustal recycling of the low-δ18O source over time, which ultimately culminated in a mantle-controlled flare-up. Our data demonstrate that spatial and temporal signals are intimately linked, and when evaluated together they provide important insights into the crustal architecture and the role of both stable and transient arc magmatic trends in Cordilleran batholiths.  more » « less
Award ID(s):
2004618
NSF-PAR ID:
10334925
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
106
Issue:
9
ISSN:
0003-004X
Page Range / eLocation ID:
1369 to 1387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The southern Coast Mountain batholith was episodically active from Jurassic to Eocene time and experienced four distinct high magmatic flux events during that period. Similar episodicity has been recognized in arcs worldwide, yet the mechanism(s) driving such punctuated magmatic behavior are debated. This study uses zircon Hf and O isotopes, with whole-rock and mineral geochemistry, to track spatiotemporal changes in southern Coast Mountains batholith melt sources and to evaluate models of flare-up behavior and crust formation in Cordilleran arc systems. Zircon Hf isotope analysis yielded consistently primitive values, with all zircon grains recording initial εHf between +6 and +16. The majority (97%) of zircons analyzed yielded δ18O values between 4.2‰ and 6.5‰, and only five grains recorded values of up to 8.3‰. These isotopic results are interpreted to reflect magmatism dominated by mantle melting during all time periods and across all areas of the southern batholith, which argues against the periodic input of more melt-fertile crustal materials as the driver of episodic arc magmatism. They also indicate that limited crustal recycling is needed to produce the large volumes of continental crust generated in the batholith. Although the isotopic character of intrusions is relatively invariant through time, magmas emplaced during flare-ups record higher Sr/Y and La/Yb(N) and lower zircon Ti and Yb concentrations, which is consistent with melting in thickened crust with garnet present as a fractionating phase. Flare-ups are also temporally associated with periods when the southern Coast Mountains batholith both widens and advances inboard. We suggest that the landward shift of the arc into more fertile lithospheric mantle domains triggers voluminous magmatism and is accompanied by magmatic and/or tectonic thickening. Overall, these results demonstrate that the magmatic growth of Cordilleran arcs can be spatially and temporally complex without requiring variability in the contributions of crust and/or mantle to the batholith. 
    more » « less
  2. We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, a ~ 500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate: 1) the timing and rates of Mesozoic arc construction, 2) mechanisms of sediment incorporation into the lower crust, and 3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use detrital zircon geochronology of 4 quartzites and paragneisses to investigate the origin of the lower-crustal Cucamonga paragneiss sequence, and U-Pb petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga paragneisses share broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a Late Paleozoic to Early Mesozoic forearc or intra-arc basin. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750°C) migmatization events at ca. 124 and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 to 75 Ma and culminated in a magmatic surge from ca. 90–75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. Our observations demonstrate that tectonic incorporation of sediments into the lower crust led to structural, compositional and rheological changes in the architecture of the arc including vertical thickening. These structural changes created weak zones that preferentially focused deformation and promoted present-day reactivation along the Cucamonga thrust fault. 
    more » « less
  3. We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, a ~ 500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate: 1) the timing and rates of Mesozoic arc construction, 2) mechanisms of sediment incorporation into the lower crust, and 3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use detrital zircon geochronology of 4 quartzites and paragneisses to investigate the origin of the lower-crustal Cucamonga paragneiss sequence, and U-Pb petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga paragneisses share broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a Late Paleozoic to Early Mesozoic forearc or intra-arc basin. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750°C) migmatization events at ca. 124 and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 to 75 Ma and culminated in a magmatic surge from ca. 90–75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. Our observations demonstrate that tectonic incorporation of sediments into the lower crust led to structural, compositional and rheological changes in the architecture of the arc including vertical thickening. These structural changes created weak zones that preferentially focused deformation and promoted present-day reactivation along the Cucamonga thrust fault. 
    more » « less
  4. Abstract We present a data set of >1500 in situ O-Hf-U-Pb zircon isotope analyses that document the existence of a concealed Rodinian lithospheric keel beneath continental Zealandia. The new data reveal the presence of a distinct isotopic domain of Paleozoic–Mesozoic plutonic rocks that contain zircon characterized by anomalously low δ18O values (median = +4.1‰) and radiogenic εHf(t) (median = +6.1). The scale (>10,000 km2) and time span (>>250 m.y.) over which plutonic rocks with this anomalously low-δ18O signature were emplaced appear unique in a global context, especially for magmas generated and emplaced along a continental margin. Calculated crustal-residence ages (depleted mantle model, TDM) for this low-δ18O isotope domain range from 1300 to 500 Ma and are interpreted to represent melting of a Precambrian lithospheric keel that was formed and subsequently hydrothermally altered during Rodinian assembly and rifting. Recognition of a concealed Precambrian lithosphere beneath Zealandia and the uniqueness of the pervasive low-δ18O isotope domain link Zealandia to South China, providing a novel test of specific hypotheses of continental block arrangements within Rodinia. 
    more » « less
  5. We integrated new and existing bedrock and detrital zircon dates from the Zealandia Cordillera to explore the tempo of Phanerozoic arc magmatism along the paleo-Pacific margin of southeast Gondwana. We found that episodic magmatism was dominated by two high-magma-addition-rate (MAR) events spaced ∼250 m.y. apart in the Devonian (370–368 Ma) and the Early Cretaceous (129–105 Ma). The intervening interval between high-MAR events was characterized by prolonged, low-MAR activity in a geographically stable location for more than 100 m.y. We found that the two high-MAR events in Zealandia have distinct chemistries (S-type for the Devonian and I-type for the Cretaceous) and are unlikely to have been related by a repeating, cyclical process. Like other well-studied arc systems worldwide, the Zealandia Cordillera high-MAR events were associated with upper-plate deformation; however, the magmatic events were triggered by enhanced asthenospheric mantle melting in two distinct arc-tectonic settings—a retreating slab and an advancing slab, respectively. Our results demonstrate that dynamic changes in the subducting slab were primary controls in triggering mantle flare-up events in the Phanerozoic Zealandia Cordillera. 
    more » « less