skip to main content


Title: Parametric Energy Simulation Methods for Solar-NIR Selective Glazing Systems
Abstract Solar near-infrared (NIR) selective glazing systems have been proposed by incorporating photothermal effects (PTE) of a nanoparticle film into building windows. From an energy efficiency perspective, the nanoscale PTE forms unique inward-flowing heat by heating up the window interior surface temperature under solar near-infrared, significantly improving the window thermal performance. Also, the PTE-driven solar heat gains are dynamic upon solar radiation and weather conditions. However, the PTE on annual building energy use has not been investigated thoroughly, due to the lack of an accurate and appropriate energy simulation method. In this study, we used the EnergyPlus energy management system to develop a parametric energy model and simulation approach in which a solar-temperature-dependent thermal model was embedded into the parametric energy simulation workflow. Applying this method, we examined the solar near-infrared-dependent PTE-induced thermal performances of glazing systems and their effects on annual heating energy use in representative cold climates (i.e., Zones 4, 5, and 6). The results show that the dynamic model considering the PTE demonstrated more heating energy savings, up to 11.64% in cold climates, as opposed to the baseline model that ignored the PTE. This work presents a method to model and simulate the dynamic thermal performance of windows with PTE.  more » « less
Award ID(s):
2001207
NSF-PAR ID:
10335122
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2069
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Windows are one of the main contributors to building energy consumption, and emerging dynamic window technologies offer improved performance. Specifically, NIRfocused window technologies are desirable in climates that consume both heating and cooling energy. However, the whole building energy effects of changeable NIR response of building windows have not been captured, largely due to the lack of an appropriate energy simulation method and NIR-focused window modeling. This study focuses on developing a simulation method that enables the comprehensive evaluation of the whole building energy effects of dynamic NIR modulations. Using an EnergyPlus EMS-based parametric framework, annual energy savings were estimated for a switchable between glass built-in system across three representative cities in ASHRAE climate zones 3, 4, and 5. This NIR-focused technology yielded energy savings of up to 19%. The results demonstrate the effects of NIR-focused window technologies on heating and cooling loads in different climates. 
    more » « less
  2. Many researchers have studied the roles of building envelope materials on UHI, such as roofs, and walls, but few of them have explored the impacts of the emergence of the solar-reflective coatings, films, and panels but well-visible transmittance that is increasingly applied to glazed building facades, especially in hot climates, for outdoor thermal environments. The question then arises: Despite the positive effects of these strong solar-reflective facades on building heating and cooling energy savings, do they have the same positive effects on the adjacent outdoor area, especially in a dense urban context? This research aims to quantify the potential UHI effects of the solar-reflective facades relative to the non-reflective ones in a dense urban context, along with the heating and cooling energy performance analysis. As such, a simulation method in terms of a series of tools including LBNL Radiance, EnergyPlus, and WINDOW software was adopted in this work to analyze the solar radiation interactions between the façade surface and the surrounding urban structures and potential temperature rise under solar-reflective and non-reflective facades. The result shows that the annual cooling energy savings by using the solar-reflective facades are about 33.8% relative to the typical double-pane clear glazed façade because of the substantial reduction of U-factor and solar heat gains; But, this preliminary work also unveils the potential adverse effects of using such materials at the urban scale, leading nearly 2 times greater solar irradiation and UHI effects than the ones by the solar-non-reflective building surfaces in an urban area. Future optimization studies on the trade-off between the building cooling energy savings and UHI effects by the solar-reflective façades need to be conducted. 
    more » « less
  3. ABSTRACT To understand the potential impacts on both thermal performance and condensation risks of using low-e coatings in buildings, especially in the single-pane sector, in this work, parametric numerical analysis in winter is conducted. Three building glazing models, including the single-pane without low-e coatings (SNL), single-pane with exterior low-e coatings (SEL), and single-pane with interior low-e coatings (SIL), are selected and simulated through COMSOL over a range of outdoor temperature and indoor humidity. The temperature of the interior surface of windows, heat flux through windows, winter U-factor of center-of-glass will be obtained and compared. Additionally, a numerical code is developed in R to compute and plot the condensation temperatures of these three models upon the given indoor humidity levels and simulated surface temperatures. The comprehensive analysis of condensation risks on the glazing inner surface of the three models will be conducted. This parametric simulation effort indicates an interesting feature for a single-pane window: while the SIL gives a substantially lower U than the SNL, it also corresponds to an increased condensation risk under certain limits of external temperature and indoor humidity levels. Upon the resultant condensation temperatures and thermal performance analysis, we can conclude the parameters of the windowpane property, coating emissivity and placement, local climate, and building interior thermal settings must be taken into account collectively when it comes to adding low-e coatings to single-pane windows. 
    more » « less
  4. null (Ed.)
    The photothermal experiments on the incident light angle dependence are carried out using simulated solar light on thin films of both iron oxides (Fe3O4 and Fe3O4@Cu2-xS) and porphyrin compounds (chlorophyll and chlorophyllin). Fe3O4 and Fe3O4@Cu2-xS are synthesized using various solution methods that produce mono-dispersed nanoparticles on the order of 10 nm. Chlorophyll is extracted from fresh spinach and chlorophyllin sodium copper is a commercial product. These photothermal (PT) materials are dispersed in polymethyl methacrylate (PMMA) solutions and deposited on glass substrates via spin coating that result in clear and transparent thin films. The iron-oxide based thin films show distinctive absorption spectra; Fe3O4 exhibits a strong peak near UV and gradually decreases into the visible and NIR regions; the absorption of Fe3O4@Cu2-xS is similar in the UV region but shows a broad absorption in the NIR region. Both chlorophyll and chlorophyllin are characterized with absorption peaks near UV and NIR showing a “U”-shaped spectrum, ideally required for efficient solar harvest and high transparency in energy-efficient single-pane window applications. Upon coating of the transparent PT films on the window inner surfaces, solar irradiation induces the photothermal effect, consequently raising the film temperature. In this fashion, the thermal loss through the window can be significantly lowered by reducing the temperature difference between the window inner surface and the room interior, based on a new concept of so-called “optical thermal insulation” (OTI) without any intervention medium, such as air/argon, as required in the glazing technologies. Single-panes are therefore possible to replace double- or triple panes. As OTI is inevitably affected by seasonal and daily sunlight changes, an incident light angle dependence of the photothermal effect is crucial in both thin film and window designs. It is found that the heating curves reach their maxima at small angles of incidence while the photothermal effect is considerably reduced at large angles. This angle dependence is well explained by light reflection by the thin film surface, however, deviated from what is predicted by the Fresnel’s law, attributable to non-ideal surfaces of the substrates. The angle dependence data provides an important reference for OTI that window exposure to sun is greater at winter solstice while that is considerably reduced in the summer. This conclusion indicates much enhanced solar harvesting and heat conversion via optically insulated windows in the winter season, resulting in much lower U-factors. 
    more » « less
  5. null (Ed.)
    Single-pane windows still account for a large percentage of US building energy consumption. In this paper, we introduced a new solution incorporating the photothermal effect of metallic nanoparticles(Fe3O4@Cu2−xS) into glazing structures to utilize solar infrared and then enhance the window’s thermal performance in winter. Such spectrally selective characteristics of the designed photothermal films were obtained from lab measurements and then integrated into a thermodynamic analytical model. Subsequently, we examined the thermal and optical behaviors of the photothermal single-pane window and compared its overall energy performance with the conventional low-e coated single-pane window, in which typical window properties, dimensions, winter boundary conditions, and solar irradiance were adopted. The numerical analysis results demonstrated that the photothermal window systems could yield 20.4% energy savings relative to the conventional low-e coated windows. This research paves an underlying thermodynamic mechanism for understanding such a nanoscale phenomenon at the architectural scale. From the implementation perspective, the designed photothermal film can be added into the existing single-pane windows for energy-efficient retrofitting purposes. 
    more » « less