skip to main content


Title: Electron acceleration using twisted laser wavefronts
Abstract Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world.  more » « less
Award ID(s):
1903098
NSF-PAR ID:
10335200
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Plasma Physics and Controlled Fusion
Volume:
63
Issue:
12
ISSN:
0741-3335
Page Range / eLocation ID:
125032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A linearly polarized Laguerre–Gaussian (LP-LG) laser beam with a twist index $l = -1$ has field structure that fundamentally differs from the field structure of a conventional linearly polarized Gaussian beam. Close to the axis of the LP-LG beam, the longitudinal electric and magnetic fields dominate over the transverse components. This structure offers an attractive opportunity to accelerate electrons in vacuum. It is shown, using three-dimensional particle-in-cell simulations, that this scenario can be realized by reflecting an LP-LG laser off a plasma with a sharp density gradient. The simulations indicate that a 600 TW LP-LG laser beam effectively injects electrons into the beam during the reflection. The electrons that are injected close to the laser axis experience a prolonged longitudinal acceleration by the longitudinal laser electric field. The electrons form distinct monoenergetic bunches with a small divergence angle. The energy in the most energetic bunch is 0.29 GeV. The bunch charge is 6 pC and its duration is approximately $270$ as. The divergence angle is just ${0.57}^{\circ }$ (10 mrad). By using a linearly polarized rather than a circularly polarized Laguerre–Gaussian beam, our scheme makes it easier to demonstrate the electron acceleration experimentally at a high-power laser facility. 
    more » « less
  2. An accurate description of plasma waves is fundamental for the understanding of many plasma phenomena. It is possible to twist plasma waves such that, in addition to having longitudinal motion, they can possess a quantized orbital angular momentum. One such type of plasma wave is the Laguerre–Gaussian mode. Three-dimensional numerical particle-in-cell simulations demonstrate the existence of stable long-lived plasma waves with orbital angular momentum. These waves can be shown to create large amplitude static magnetic fields with unique twisted longitudinal structures. In this paper, we review the recent progress in studies of helical plasma waves and present a new analytical description of a standing Laguerre–Gaussian plasma wave mode along with 3D particle-in-cell simulation results. The Landau damping of twisted plasma waves shows important differences compared to standard longitudinal plasma wave Landau damping. These effects include an increased damping rate, which is affected by both the focal width and the orbital number of the plasma wave. This increase in the damping rate is of the same order as the thermal correction. Moreover, the direction of momentum picked up by resonant particles from the twisted plasma wave can be significantly altered. By contrast, the radial electric field has a subtle effect on the trajectories of resonant electrons. 
    more » « less
  3. Sub-optical-cycle dynamics of dense electron bunches in relativistic-intensity laser–solid interactions lead to the emission of high-order harmonics and attosecond light pulses. The capacity of particle-in-cell simulations to accurately model these dynamics is essential for the prediction of emission properties because the attosecond pulse intensity depends on the electron density distribution at the time of emission and on the temporal distribution of individual electron Lorentz-factors in an emitting electron bunch. Here, we show that in one-dimensional collisionless simulations, the peak density of the emitting electron bunch increases with the increase in the spatial resolution of the simulation grid. When collisions are added to the model, the peak electron density becomes independent of the spatial resolution. Collisions are shown to increase the spread of the peaks of Lorentz-factors of emitting electrons in time, especially in the regimes far from optimum generation conditions, thus leading to lower intensities of attosecond pulses as compared to those obtained in collisionless simulations. 
    more » « less
  4. Abstract

    The concept of electron acceleration by a laser beam in vacuum is attractive due to its seeming simplicity, but its implementation has been elusive, as it requires efficient electron injection into the beam and a mechanism for counteracting transverse expulsion. Electron injection during laser reflection off a plasma mirror is a promising mechanism, but it is sensitive to the plasma density gradient that is hard to control. We get around this sensitivity by utilizing volumetric injection that takes place when a helical laser beam traverses a low-density target. The electron retention is achieved by choosing the helicity, such that the transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50 pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of the beam are short acceleration distance (∼100 μm), compact transverse size, high areal density, and electron bunching (∼100 as bunch duration).

     
    more » « less
  5. In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by resonantly driving the betatron oscillations of the electrons in the plasma wave. The traditional particle-in-cell (PIC) algorithm, although often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and magnetic fields. Furthermore, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse, which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals that the most energetic electrons receive comparable energy from DLA and LWFA. 
    more » « less