skip to main content


Title: Study the Use of Activated Carbon and Bone Char on the Performance of Gravity Sand-Bag Water Filter
In this study, granulated activated charcoal (GAC) and bio charcoal (BC) is used as a filler in P3 biosand bag filter to study their filtration performance against a range of fluoride impurities from 1–1400 mg/L. A set of experiments are done to analyze the filtration efficiency of the sandbag filter against fluoride impurities after incorporating different amounts (e.g., 0.2, 2 kg) and a combination of GAC and BC. A combination of filler GAC and BC (1 kg each) have exhibited excellent results with 100% fluoride removal efficiency against 5 mg/L fluoride impurities for an entire experimental time of 165 min. It is because of the synergetic effect of adsorption caused by the high surface area (739 m2/g) of GAC and hydroxyapatite groups in BC. The data from remediation experiments using individual GAC and BC are fitted into the Langmuir and Freundlich Isotherm Models to check their adsorption mechanism and determine GAC and BC’s maximum adsorption capacity (Qm). The remediation data for both GAC and BC have shown the better fitting to the Langmuir Isotherm Model with a high R2 value of 0.994 and 0.970, respectively, showing the excellent conformity with monolayer adsorption. While the GAC and BC have presented negative Kf values of −1.08 and −0.72, respectively, for Freundlich Model, showing the non-conformity to multilayer adsorption. The Qm values obtained from Langmuir Model for GAC is 6.23 mg/g, and for BC, it is 9.13 mg/g. The pH study on adsorption efficiency of individual GAC and BC against 5 mg/L of fluoride impurities indicates the decrease in removal efficiency with an increase in pH from 3 to 9. For example, BC has shown removal efficiency of 99.8% at pH 3 and 99.5% at pH 9, while GAC has exhibited removal efficiency of 96.1% at pH 3 and 95.9% at pH 9. Importantly, this study presents the significance of the synergetic application of GAC and BC in the filters, where GAC and BC are different in their origin, functionalities, and surface characteristics.  more » « less
Award ID(s):
1808690
NSF-PAR ID:
10335311
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Membranes
Volume:
11
Issue:
11
ISSN:
2077-0375
Page Range / eLocation ID:
868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.

     
    more » « less
  2. Thallium(I) (Tl(I)) pollution has become a pressing environmental issue due to its harmful effect on human health and aquatic life. Effective technology to remove Tl(I) ions from drinking water can offer immediate societal benefits especially in the developing countries. In this study, a bio-adsorbent system based on nitro-oxidized nanocellulose (NOCNF) extracted from sorghum stalks was shown to be a highly effective Tl(I) removal medium. The nitro-oxidation process (NOP) is an energy-efficient, zero-waste approach that can extract nanocellulose from any lignocellulosic feedstock, where the effluent can be neutralized directly into a fertilizer without the need for post-treatment. The demonstrated NOCNF adsorbent exhibited high Tl(I) removal efficiency (>90% at concentration < 500 ppm) and high maximum removal capacity (Qm = 1898 mg/g using the Langmuir model). The Tl(I) adsorption mechanism by NOCNF was investigated by thorough characterization of NOCNF-Tl floc samples using spectroscopic (FTIR), diffraction (WAXD), microscopic (SEM, TEM, and AFM) and zeta-potential techniques. The results indicate that adsorption occurs mainly due to electrostatic attraction between cationic Tl(I) ions and anionic carboxylate groups on NOCNF, where the adsorbed Tl(I) sites become nuclei for the growth of thallium oxide nanocrystals at high Tl(I) concentrations. The mineralization process enhances the Tl(I) removal efficiency, and the mechanism is consistent with the isotherm data analysis using the Freundlich model. 
    more » « less
  3. Raw wood was subjected to sequential oxidation to produce 2,3,6-tricarboxycellulose (TCC) nanofibers with a high surficial charge of 1.14 mmol/g in the form of carboxylate groups. Three oxidation steps, including nitro-oxidation, periodate, and sodium chlorite oxidation, were successfully applied to generate TCC nanofibers from raw wood. The morphology of extracted TCC nanofibers measured using TEM and AFM indicated the average length, width, and thickness were in the range of 750 ± 110, 4.5 ± 1.8, and 1.23 nm, respectively. Due to high negative surficial charges on TCC, it was studied for its absorption capabilities against Pb2+ ions. The remediation results indicated that a low concentration of TCC nanofibers (0.02 wt%) was able to remove a wide range of Pb2+ ion impurities from 5–250 ppm with an efficiency between 709–99%, whereby the maximum adsorption capacity (Qm) was 1569 mg/g with R2 0.69531 calculated from Langmuir fitting. It was observed that the high adsorption capacity of TCC nanofibers was due to the collective effect of adsorption and precipitation confirmed by the FTIR and SEM/EDS analysis. The high carboxylate content and fiber morphology of TCC has enabled it as an excellent substrate to remove Pb2+ ions impurities. 
    more » « less
  4. Excessive levels of phosphate in stormwater runoff can negatively impact receiving surface water bodies, such as retention ponds, and may also seep into groundwater. Liner systems composed of materials with greater phosphate selectivity have the potential to mitigate infiltration and eliminate phosphate. One potential material is chitosan, an abundant naturally occurring biopolymer. This study evaluated five materials for their ability to remove phosphate from synthetic stormwater using batch tests with different initial phosphate concentrations ranging from 0.5 to 12 mg/L and a fixed 24-h exposure time. The materials included two types of clayey soils (kaolin and bentonite) and three different varieties of chitosan with varying molecular weights (low, medium, and high). The phosphate removal efficiency of kaolin was found to be the highest, with efficiencies ranging from 100% to 56% at different concentrations, while bentonite was found to be the least effective, with removal efficiencies ranging from 40% to 12%. The removal efficiencies of all three types of chitosans analyzed were higher than those of bentonite but lower than those of kaolin. The removal efficiencies ranged from 77% to 19% for low-molecular-weight chitosan, 84% to 31% for medium-molecular-weight chitosan, and 55% to 18% for high-molecular-weight chitosan. The removal mechanism of phosphate by kaolin and bentonite was attributed to surface adsorption and precipitation. In chitosan, the likely mechanism is electrostatic attraction. The maximum adsorption capacity for kaolin was not reached under the tested phosphate concentration range, indicating potential adsorption sites remained available on the particle surfaces. The results for bentonite, low-molecular-weight chitosan, and high-molecular-weight chitosan showed that these materials nearly reached their maximum adsorption capacities, indicating that fewer adsorption sites were remaining. The Langmuir adsorption isotherm was found to be the best-fit model for phosphate adsorption in all the materials tested compared to the Freundlich isotherm. According to the Langmuir model, the maximum adsorption capacities for kaolin, bentonite, low-molecular-weight chitosan, medium-molecular-weight chitosan, and high-molecular-weight chitosan were found to be 140.85, 33, 48.78, 82.64, and 51.28 mg/kg, respectively. 
    more » « less
  5. Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques. 
    more » « less