skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Well-posedness of free boundary hard phase fluids in Minkowski background and their Newtonian limit
The hard phase model describes a relativistic barotropic irrotational fluid with sound speed equal to the speed of light. In this paper, we prove the local well-posedness for this model in the Minkowski background with free boundary. Moreover, we show that as the speed of light tends to infinity, the solution of this model converges to the solution of the corresponding Newtonian free boundary problem for incompressible fluids. In the appendix we explain how to extend our proof to the general barotropic fluid free boundary problem.  more » « less
Award ID(s):
1764112
PAR ID:
10335360
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Cambridge journal of mathematics
Volume:
9 (2021)
Issue:
2
ISSN:
2168-0949
Page Range / eLocation ID:
269 – 350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The free boundary problem for a two‐dimensional fluid permeating a porous medium is studied. This is known as the one‐phase Muskat problem and is mathematically equivalent to the vertical Hele‐Shaw problem driven by gravity force. We prove that if the initial free boundary is the graph of a periodic Lipschitz function, then there exists a global‐in‐time Lipschitz solution in the strong sense and it is the unique viscosity solution. The proof requires quantitative estimates for layer potentials and pointwise elliptic regularity in Lipschitz domains. This is the first construction of unique global strong solutions for the Muskat problem with initial data of arbitrary size. 
    more » « less
  2. We study the Muskat problem for one fluid in an arbitrary dimension, bounded below by a flat bed and above by a free boundary given as a graph. In addition to a fixed uniform gravitational field, the fluid is acted upon by a generic force field in the bulk and an external pressure on the free boundary, both of which are posited to be in traveling wave form. We prove that, for sufficiently small force and pressure data in Sobolev spaces, there exists a locally unique traveling wave solution in Sobolev-type spaces. The free boundary of the traveling wave solutions is either periodic or asymptotically flat at spatial infinity. Moreover, we prove that small periodic traveling wave solutions induced by external pressure only are asymptotically stable. These results provide the first class of nontrivial stable solutions for the problem. 
    more » « less
  3. In fluid dynamics applications that involve flow adjacent to a porous medium, there exists some ambiguity in how to model the interface. Despite different developments, there is no agreed upon boundary condition that should be applied at the interface. We present a new analytical solution for laminar boundary layers over permeable beds driven by oscillatory free stream motion where flow in the permeable region follows Darcy's law. We study the fluid boundary layer for two different boundary conditions at the interface between the fluid and a permeable bed that was first introduced in the context of steady flows: a mixed boundary condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable bed,” J. Fluid Mech. 30, 197–207 (1967)] and the velocity continuity condition proposed by Le Bars and Worster [“Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification,” J. Fluid Mech. 550, 149–173 (2006)]. Our analytical solution based on the velocity continuity condition agrees very well with numerical results using the mixed boundary condition, suggesting that the simpler velocity boundary condition is able to accurately capture the flow physics near the interface. Furthermore, we compare our solution against experimental data in an oscillatory boundary layer generated by water waves propagating over a permeable bed and find good agreement. Our results show the existence of a transition zone below the interface, where the boundary layer flow still dominates. The depth of this transition zone scales with the grain diameter of the porous medium and is proportional to an empirical parameter that we fit to the available data. 
    more » « less
  4. In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly. 
    more » « less
  5. We are concerned with the suitability of the main models of compressible fluid dynamics for the Lighthill problem for shock diffraction by a convex corned wedge, by studying the regularity of solutions of the problem, which can be formulated as a free boundary problem. In this paper, we prove that there is no regular solution that is subsonic up to the wedge corner for potential flow. This indicates that, if the solution is subsonic at the wedge corner, at least a characteristic discontinuity (vortex sheet or entropy wave) is expected to be generated, which is consistent with the experimental and computational results. Therefore, the potential flow equation is not suitable for the Lighthill problem so that the compressible Euler system must be considered. In order to achieve the nonexistence result, a weak maximum principle for the solution is established, and several other mathematical techniques are developed. The methods and techniques developed here are also useful to the other problems with similar difficulties. 
    more » « less