skip to main content


Title: Flow in oscillatory boundary layers over permeable beds
In fluid dynamics applications that involve flow adjacent to a porous medium, there exists some ambiguity in how to model the interface. Despite different developments, there is no agreed upon boundary condition that should be applied at the interface. We present a new analytical solution for laminar boundary layers over permeable beds driven by oscillatory free stream motion where flow in the permeable region follows Darcy's law. We study the fluid boundary layer for two different boundary conditions at the interface between the fluid and a permeable bed that was first introduced in the context of steady flows: a mixed boundary condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable bed,” J. Fluid Mech. 30, 197–207 (1967)] and the velocity continuity condition proposed by Le Bars and Worster [“Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification,” J. Fluid Mech. 550, 149–173 (2006)]. Our analytical solution based on the velocity continuity condition agrees very well with numerical results using the mixed boundary condition, suggesting that the simpler velocity boundary condition is able to accurately capture the flow physics near the interface. Furthermore, we compare our solution against experimental data in an oscillatory boundary layer generated by water waves propagating over a permeable bed and find good agreement. Our results show the existence of a transition zone below the interface, where the boundary layer flow still dominates. The depth of this transition zone scales with the grain diameter of the porous medium and is proportional to an empirical parameter that we fit to the available data.  more » « less
Award ID(s):
2048676
NSF-PAR ID:
10400595
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physics of Fluids
Volume:
34
Issue:
9
ISSN:
1070-6631
Page Range / eLocation ID:
092112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Numerous field observations of tsunami-induced eddies in ports and harbours have been reported for recent tsunami events. We examine the evolution of a turbulent shallow-water monopolar vortex generated by a long wave through a series of large-scale experiments in a rectangular wave basin. A leading-elevation asymmetric wave is guided through a narrow channel to form a flow separation region on the lee side of a straight vertical breakwater, which coupled with the transient flow leads to the formation of a monopolar turbulent coherent structure (TCS). The vortex flow after detachment from the trailing jet is fully turbulent ( $Re_h \sim O(10^{4}\text {--}10^{5}$ )) for the remainder of the experimental duration. The free surface velocity field was extracted through particle tracking velocimetry over several experimental trials. The first-order model proposed by Seol & Jirka ( J. Fluid Mech. , vol. 665, 2010, pp. 274–299) to predict the decay and spatial growth of shallow-water vortices fits the experimental data well. Bottom friction is predicted to induce a $t^{-1}$ azimuthal velocity decay and turbulent viscous diffusion results in a $\sqrt {t}$ bulk vortex radial growth, where $t$ represents time. The azimuthal velocity, vorticity and free surface elevation profiles are well described through an idealised geophysical vortex. Kinematic free surface boundary conditions predict weak upwelling in the TCS-centre, followed by a zone of downwelling in a recirculation pattern along the water column. The vertical confinement of the flow is quantified through the ratio of kinetic energy contained in the secondary and primary surface velocity fields and a transition point towards a quasi-two-dimensional flow is identified. 
    more » « less
  2. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  3. Abstract

    Floating treatment wetlands (FTWs) are efficient at wastewater treatment; however, data and physical models describing water flow through them remain limited. A two‐domain model is proposed dividing the flow region into an upper part characterizing the flow through suspended vegetation and an inner part describing the vegetation‐free zone. The suspended vegetation domain is represented as a porous medium characterized by constant permeability thereby allowing Biot's Law to be used to describe the mean velocity and stress profiles. The flow in the inner part is bounded by asymmetric stresses arising from interactions with the suspended vegetated (porous) base and solid channel bed. An asymmetric eddy viscosity model is employed to derive an integral expression for the shear stress and the mean velocity profiles in this inner layer. The solution features an asymmetric shear stress index that reflects two different roughness conditions over the vegetation‐induced auxiliary bed and the physical channel bed. A phenomenological model is then presented to explain this index. An expression for the penetration depth into the porous medium defined by 10% of the maximum shear stress is also derived. The predicted shear stress profile, local mean velocity profile, and bulk velocity agree with the limited experiments published in the literature.

     
    more » « less
  4. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  5. Abstract

    Entrainment and suspension of sediment particles with the size distribution similar to a range of natural sands were simulated with a focus on the vertical size sorting and transport dynamics in response to different wave conditions. The simulations were performed using a two‐phase Eulerian‐Lagrangian model by combining the LIGGGHTS discrete element method solver for sediment and SedFoam solver for the fluid phase. The model was first validated for a range of sand grain sizes from 0.21 to 0.97 mm having well‐sorted and mixed (bimodal) size distributions using laboratory oscillatory flow data. Three sediment bed configurations were studied under a wide range of velocity‐skewed waves with different wave intensity and skewness. It was found that the bimodal distribution having only 30% of coarse fraction and 70% of medium fraction responds similar to a well‐sorted coarse sand configuration. Sediment fluxes of the bimodal distribution were slightly higher than those of well‐sorted coarse sand because of the pronounced inverse grading in the bimodal distribution. Furthermore, for the bimodal distribution the medium fraction acted as a relatively smooth foundation underneath the coarse fraction which facilitated the mobilization of the coarser particles. Under high energy wave conditions, the smoothing feature was exacerbated and further caused the formation of plug flow where a thick layer of intense sediment flux was observed. Model results also showed that under high skewness waves, phase‐lag effect occurred in well‐sorted medium sand which caused lower net onshore sediment transport rates but the effect was significantly reduced for mixed sediments.

     
    more » « less