We discuss implementation of the LHC experimental data sets in the new CT18 global analysis of quantum chromodynamics (QCD) at the next-to-next-leading order of the QCD coupling strength. New methodological developments in the fitting methodology are discussed. Behavior of the CT18 NNLO PDFs for the conventional and "saturation-inspired" factorization scales in deep-inelastic scattering is reviewed. Four new families of (N)NLO CTEQ-TEA PDFs are presented: CT18, A, X, and Z.
more »
« less
QCD factorization and quantum mechanics
It is unusual to find quantum chromodynamics (QCD) factorization explained in the language of quantum information science. However, we will discuss how the issue of factorization and its breaking in high-energy QCD processes relates to phenomena like decoherence and entanglement. We will elaborate with several examples and explain them in terms familiar from basic quantum mechanics and quantum information science. This article is part of the theme issue ‘Quantum technologies in particle physics’.
more »
« less
- Award ID(s):
- 2012926
- PAR ID:
- 10335371
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 380
- Issue:
- 2216
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We discuss implementation of the LHC experimental data sets in the new CT18 global analysis of quantum chromodynamics (QCD) at the next-to-next-leading order of the QCD coupling strength. New methodological developments in the fitting methodology are discussed. Behavior of the CT18 NNLO PDFs for the conventional and "saturation-inspired" factorization scales in deep-inelastic scattering is reviewed. Four new families of (N)NLO CTEQ-TEA PDFs are presented: CT18, A, X, and Zmore » « less
-
Rothkopf, A.; Brambilla, N.; Tolos, L.; Tranberg, A.; Kurkela, A.; Roehrich, D.; Andersen, J.O.; Tywoniuk, K.; Antonov, D.; Greensite, J. (Ed.)We report the current understanding of heavy quarkonium production at high transverse momentum ( p T ) in hadronic collisions in terms of QCD factorization. In this presentation, we highlight the role of subleading power corrections to heavy quarkonium production, which are essential to describe the p T spectrum of quarkonium at a relatively lower p T . We also introduce prescription to match QCD factorization to fixed-order NRQCD factorization calculations for quarkonium production at low p T .more » « less
-
Quantum information science (QIS) is critical to the future of economic and national security, commerce, and technology). There is a broad need to develop a "quantum smart" workforce with some on critical topics, such as quantum concepts that are relevant to everyday experiences in information security, smart phones, computers, and other widely used technology. The Quantum for All project, funded by the US National Science Foundation, provides opportunities for students to learn about various aspects of quantum science by providing professional development for STEM educators to learn and practice QIS. We utilize a trainer of trainer approach. In this paper we will discuss the content areas and provide an outline of the professional development model. We will also examine growth in teacher content knowledge and their confidence in that content knowledge. Our preliminary results are that the workshops are effective in raising both metrics as measured by pre- and post-surveys, however, there are differences between the content areas. We will examine these differences and provide possible reasons for the results.more » « less
-
The future of economic and national security, commerce, and technology are becoming more dependent on quantum information science (QIS). In addition to traditional STEM fields, there will be a broad need to develop a "quantum smart" workforce, and this development needs to begin before college. Since most students will not major in physics, it is vital to expose precollege students to quantum concepts that are relevant to everyday experiences with information security, smart phones, computers, and other widely used technology. This project, funded by the US National Science Foundation, provides opportunities for students to learn about various aspects of quantum science, regardless of whether they take a physics class. This project provides opportunities for secondary educators to learn and practice QIS. Project partners include universities, businesses, and professional organizations such as Science Teacher Association in Utah and Texas, American Association of Physics Teachers, Institute for Quantum Computing, and Perimeter Institute for Theoretical Physics. In particular, we utilize a trainer of trainer approach, however, the teacher professional development is tied to summer camp experience for students during which the teachers can test their delivery of the material with students in the summer camp. In this paper we will discuss the content areas and provide an outline of the professional development model.more » « less