skip to main content

Title: Breaking the Symmetry in Queues with Delayed Information
Giving customers queue length information about a service system has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze a two-dimensional deterministic fluid model that incorporates customer choice behavior based on delayed queue length information. Reports in the existing literature always assume that all queues have identical parameters and the underlying dynamical system is symmetric. However, in this paper, we relax this symmetry assumption by allowing the arrival rates, service rates, and the choice model parameters to be different for each queue. Our methodology exploits the method of multiple scales and asymptotic analysis to understand how to break the symmetry. We find that the asymmetry can have a large impact on the underlying dynamics of the queueing system.
Authors:
; ;
Award ID(s):
1751975
Publication Date:
NSF-PAR ID:
10335436
Journal Name:
International Journal of Bifurcation and Chaos
Volume:
31
Issue:
09
Page Range or eLocation-ID:
2130027
ISSN:
0218-1274
Sponsoring Org:
National Science Foundation
More Like this
  1. Many service systems provide queue length information to customers, thereby allowing customers to choose among many options of service. However, queue length information is often delayed, and it is often not provided in real time. Recent work by Dong et al. [Dong J, Yom-Tov E, Yom-Tov GB (2018) The impact of delay announcements on hospital network coordination and waiting times. Management Sci. 65(5):1969–1994.] explores the impact of these delays in an empirical study in U.S. hospitals. Work by Pender et al. [Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Internat. J. Bifurcation Chaos Appl. Sci. Engrg. 27(4):1730016-1–1730016-20.] uses a two-dimensional fluid model to study the impact of delayed information and determine the exact threshold under which delayed information can cause oscillations in the dynamics of the queue length. In this work, we confirm that the fluid model analyzed by Pender et al. [Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Internat. J. Bifurcation Chaos Appl. Sci. Engrg. 27(4):1730016-1–1730016-20.] can be rigorously obtained as a functional law of large numbers limit of a stochastic queueing process, and we generalize their threshold analysis to arbitrary dimensions. Moreover, we prove amore »functional central limit theorem for the queue length process and show that the scaled queue length converges to a stochastic delay differential equation. Thus, our analysis sheds new insight on how delayed information can produce unexpected system dynamics.« less
  2. We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delay-sensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelation-principlemore »style argument, we find that it suffices to consider signaling mechanisms where the service provider sends a binary signal of "join" or "leave", and under which the equilibrium strategy of a customer is to follow the service provider's recommended action. (2) Optimality of threshold policies: For a given fixed price for service, we use the structural characterization to show that the optimal signaling mechanism can be obtained as a solution to a linear program with a countable number of variables and constraints. Under some mild technical conditions on the waiting costs, we establish that there exists an optimal signaling mechanism with a threshold structure, where service provider sends the "join" signal if the queue length is below a threshold, and "leave" otherwise. (In addition, at the threshold, the service provider randomizes.) For the special case of linear waiting costs, we derive an analytical expression for the optimal threshold i terms of the two branches of the Lambert-W function. (3) Revenue comparison: Finally, we show that with the optimal choice of the fixed price and using the corresponding optimal signaling mechanism, the service provider can achieve the same revenue as with the optimal state-dependent pricing mechanism in a fully-observable queue. This implies that in settings where state-dependent pricing is not feasible, the service provider can effectively use optimal signaling (with the optimal fixed price) to achieve the same revenue.« less
  3. In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as itmore »could with an observable queue and length-dependent variable prices. Next, we study demand and inventory signaling in online markets: customers make strategic purchasing decisions, knowing the price will decrease if an item does not sell out. The firm aims to convince customers to buy now at a higher price. We show that the optimal signaling mechanism is public, and sends all customers the same information. Finally, we consider customers whose ex ante utility is not simply their expected ex post utility, but instead a function of its distribution. We bound the number of signals needed for the firm to generate their optimal utility and provide a convex program reduction of the firm's problem.« less
  4. Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-server-per-job model: an arrival might not "fit" into the available servers and might have to queue, blocking later arrivals and leaving servers idle. From a queueing perspective, almost nothing is understood about multi-server job queueing systems; even understanding the exact stability region is a very hard problem. In this paper, we investigate a multi-server job queueing model under scaling regimes where the number of servers in the system grows. Specifically, we consider a system with multiple classes of jobs, where jobs from different classes can request different numbers of servers and have different service time distributions, and jobs are served in first-come-first-served order. The multi-server job model opens up new scaling regimes where both the number of servers that a job needs and the system load scale with the total number of servers. Within these scaling regimes, we derive the first results on stability, queueing probability, and the transient analysis of the number of jobs in the system for each class.more »In particular we derive sufficient conditions for zero queueing. Our analysis introduces a novel way of extracting information from the Lyapunov drift, which can be applicable to a broader scope of problems in queueing systems.« less
  5. Cloud computing today is dominated by multi-server jobs. These are jobs that request multiple servers simultaneously and hold onto all of these servers for the duration of the job. Multi-server jobs add a lot of complexity to the traditional one-server-per-job model: an arrival might not "fit'' into the available servers and might have to queue, blocking later arrivals and leaving servers idle. From a queueing perspective, almost nothing is understood about multi-server job queueing systems; even understanding the exact stability region is a very hard problem. In this paper, we investigate a multi-server job queueing model under scaling regimes where the number of servers in the system grows. Specifically, we consider a system with multiple classes of jobs, where jobs from different classes can request different numbers of servers and have different service time distributions, and jobs are served in first-come-first-served order. The multi-server job model opens up new scaling regimes where both the number of servers that a job needs and the system load scale with the total number of servers. Within these scaling regimes, we derive the first results on stability, queueing probability, and the transient analysis of the number of jobs in the system for each class.more »In particular we derive sufficient conditions for zero queueing. Our analysis introduces a novel way of extracting information from the Lyapunov drift, which can be applicable to a broader scope of problems in queueing systems.« less