The pulvinar, also called the lateral posterior nucleus of the thalamus in rodents, is one of the higher-order thalamic relays and the main visual extrageniculate thalamic nucleus in rodents and primates. Although primate studies report the pulvinar is engaged under attentional demands, there are open questions about the detailed role of the pulvinar in visuospatial attention. The pulvinar provides the primary thalamic input to the posterior parietal cortex (PPC). Both the pulvinar and the PPC are known to be important for visuospatial attention. Our previous work showed that neuronal activity in the PPC correlated with multiple phases of a visuospatial attention (VSA) task, including onset of the visual stimuli, decision-making, task-relevant locations, and behavioral outcomes. Here, we hypothesized that the pulvinar, as the major thalamic input to the PPC, is involved in visuospatial attention as well as in other cognitive functions related to the processing of visual information. We recorded the neuronal activity of the pulvinar in rats during their performance on the VSA task. The task was designed to engage goal-directed, top–down attention as well as stimulus-driven, bottom–up attention. Rats monitored three possible locations for the brief appearance of a target stimulus. An approach to the correct target location was followed by a liquid reward. For analysis, each trial was divided into behavioral epochs demarcated by stimulus onset, selection behavior, and approach to reward. We found that neurons in the pulvinar signaled stimulus onset and selection behavior consistent with the interpretation that the pulvinar is engaged in both bottom–up and top–down visuospatial attention. Our results also suggested that pulvinar cells responded to allocentric and egocentric task-relevant locations.
more »
« less
Functional Differentiation of Dorsal and Ventral Posterior Parietal Cortex of the Rat: Implications for Controlled and Stimulus-Driven Attention
Abstract The posterior parietal cortex (PPC) is important for visuospatial attention. The primate PPC shows functional differentiation such that dorsal areas are implicated in top–down, controlled attention, and ventral areas are implicated in bottom–up, stimulus-driven attention. Whether the rat PPC also shows such functional differentiation is unknown. Here, we address this open question using functional neuroanatomy and in vivo electrophysiology. Using conventional tract-tracing methods, we examined connectivity with other structures implicated in visuospatial attention including the lateral posterior nucleus of the thalamus (LPn) and the postrhinal cortex (POR). We showed that the LPn projects to the entire PPC, preferentially targeting more ventral areas. All parts of the PPC and POR are reciprocally connected with the strongest connections evident between ventral PPC and caudal POR. Next, we simultaneously recorded neuronal activity in dorsal and ventral PPC as rats performed a visuospatial attention (VSA ) task that engages in both bottom–up and top–down attention. Previously, we provided evidence that the dorsal PPC is engaged in multiple cognitive process including controlled attention (Yang et al. 2017). Here, we further showed that ventral PPC cells respond to stimulus onset more rapidly than dorsal PPC cells, providing evidence for a role in stimulus-driven, bottom–up attention.
more »
« less
- Award ID(s):
- 1656488
- PAR ID:
- 10335505
- Date Published:
- Journal Name:
- Cerebral Cortex
- Volume:
- 32
- Issue:
- 9
- ISSN:
- 1047-3211
- Page Range / eLocation ID:
- 1787 to 1803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.more » « less
-
In models of visual spatial attention control, it is commonly held that top–down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top–down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these baseline neural activity changes translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a voluntary spatial attention task, using two independent functional magnetic resonance imaging datasets and two analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants’ free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top–down control and how these biases influence both sensory processing and behavioral performance.more » « less
-
null (Ed.)According to the influential “Two Visual Pathways” hypothesis, the cortical visual system is segregated into two pathways, with the ventral, occipitotemporal pathway subserving object perception, and the dorsal, occipitoparietal pathway subserving the visuomotor control of action. However, growing evidence suggests that the dorsal pathway also plays a functional role in object perception. In the current article, we present evidence that the dorsal pathway contributes uniquely to the perception of a range of visuospatial attributes that are not redundant with representations in ventral cortex. We describe how dorsal cortex is recruited automatically during perception, even when no explicit visuomotor response is required. Importantly, we propose that dorsal cortex may selectively process visual attributes that can inform the perception of potential actions on objects and environments, and we consider plausible developmental and cognitive mechanisms that might give rise to these representations. As such, we consider whether naturalistic stimuli, such as real-world solid objects, might engage dorsal cortex more so than simplified or artificial stimuli such as images that do not afford action, and how the use of suboptimal stimuli might limit our understanding of the functional contribution of dorsal cortex to visual perception.more » « less
-
Primary auditory cortex is a critical stage in the human auditory pathway, a gateway between subcortical and higher-level cortical areas. Receiving the output of all subcortical processing, it sends its output on to higher-level cortex. Non-invasive physiological recordings of primary auditory cortex using electroencephalography (EEG) and magnetoencephalography (MEG), however, may not have sufficient specificity to separate responses generated in primary auditory cortex from those generated in underlying subcortical areas or neighboring cortical areas. This limitation is important for investigations of effects of top-down processing (e.g., selective-attention-based) on primary auditory cortex: higher-level areas are known to be strongly influenced by top-down processes, but subcortical areas are often assumed to perform strictly bottom-up processing. Fortunately, recent advances have made it easier to isolate the neural activity of primary auditory cortex from other areas. In this perspective, we focus on time-locked responses to stimulus features in the high gamma band (70–150 Hz) and with early cortical latency (∼40 ms), intermediate between subcortical and higher-level areas. We review recent findings from physiological studies employing either repeated simple sounds or continuous speech, obtaining either a frequency following response (FFR) or temporal response function (TRF). The potential roles of top-down processing are underscored, and comparisons with invasive intracranial EEG (iEEG) and animal model recordings are made. We argue that MEG studies employing continuous speech stimuli may offer particular benefits, in that only a few minutes of speech generates robust high gamma responses from bilateral primary auditory cortex, and without measurable interference from subcortical or higher-level areas.more » « less
An official website of the United States government

