Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)The Klamath Mountains Province of Northern California and southern Oregon, USA, consists of generally east-dipping terranes assembled via Paleozoic to Mesozoic subduction along the western margin of North America. The Klamath Mountains Province more than doubled in mass from Middle Jurassic to Early Cretaceous time, due to alternating episodes of extension (e.g., rifting and formation of the Josephine ophiolite) and shortening (e.g., Siskiyou and Nevadan events). However, the tectonic mechanisms driving this profound Mesozoic growth of the Klamath Mountains Province are poorly understood. In this paper, we show that formation of the Condrey Mountain schist (CMS) of the central Klamath Mountains Province spanned this critical time period and use the archive contained within the CMS as a key to deciphering the Mesozoic tectonics of the Klamath Mountains Province. Igneous samples from the outer CMS subunit yield U-Pb zircon ages of ca. 175–170 Ma, which reflect volcanic protolith eruptive timing. One detrital sample from the same subunit contains abundant (~54% of zircon grains analyzed) Middle Jurassic ages with Paleozoic and Proterozoic grains comprising the remainder and yields a maximum depositional age (MDA) of ca. 170 Ma. These ages, in the context of lithologic and thermochronologic relations, suggest that outer CMS protoliths accumulated in an outboard rift basin and subsequently underthrust the Klamath Mountains Province during the Late Jurassic Nevadan orogeny. Five samples of the chiefly metasedimentary inner CMS yield MDAs ranging from 160 Ma to 130 Ma, with younger ages corresponding to deeper structural levels. Such inverted age zonation is common in subduction complexes and, considering existing K-Ar ages, suggests that the inner CMS was assembled by progressive underplating over a >10 m.y. timespan. Despite this age zonation, age spectra derived from structurally shallow and deep portions of the inner CMS closely overlap those derived from the oldest section of the Franciscan subduction complex (South Fork Mountain schist). These relations suggest that the inner CMS is a composite of South Fork Mountain schist slices that were sequentially underplated beneath the Klamath Mountains Province. The age, inboard position, and structural position (i.e., the CMS resides directly beneath Jurassic arc assemblages with no intervening mantle) of the CMS suggest that these rocks were emplaced during one or more previously unrecognized episodes of shallow-angle subduction restricted to the Klamath Mountains Province. Furthermore, emplacement of the deepest portions of the CMS corresponds with the ca. 136 Ma termination of magmatism in the Klamath Mountains Province, which we relate to the disruption of asthenospheric flow during slab shallowing. The timing of shallow-angle subduction shortly precedes that of the westward translation of the Klamath Mountains Province relative to correlative rocks in the northern Sierra Nevada Range, which suggests that subduction dynamics were responsible for relocating the Klamath Mountains Province from the arc to the forearc. In aggregate, the above relations require at least three distinct phases of extension and/or rifting, each followed by an episode of shallow-angle underthrusting. The dynamic upper-plate deformation envisioned here is best interpreted in the context of tectonic switching, whereby slab steepening and trench retreat alternate with slab shallowing due to recurrent subduction of buoyant oceanic features.more » « less
-
Abstract We present a novel approach for mapping vertical uplifts in exhumed metasedimentary rocks by coupling Raman spectroscopy of carbonaceous material with (U-Th)/He thermochronometry on apatite and zircon. We apply this approach to carbonaceous metasedimentary rocks of the Franciscan subduction complex, exposed in the Nacimiento block of central California, USA, an area that records high-pressure–low-temperature metamorphism prior to entrainment within the present-day transform plate boundary. We reveal the extent and magnitude of previously unrecognized exhumation gradients, which, combined with regional structural observations, can be used to quantify vertical crustal motion associated with localized transpression. We propose that the Nacimiento block was affected by a kilometer-scale, post-subduction thermal anomaly linked to a localized transpressive regime since ca. 25 Ma, with an uplift rate of ∼0.3 mm/yr.more » « less
-
Booth, A.M. (Ed.)The Klamath Mountains province and adjacent Franciscan subduction complex (northern California–southern Oregon) together contain a world-class archive of subduction-related growth and stabilization of continental lithosphere. These key elements of the North American Cordillera expanded significantly from Middle Jurassic to Early Cretaceous time, apparently by a combination of tectonic accretion and continental arc– plus rift-related magmatic additions. The purpose of this field trip is twofold: to showcase the rock record of continental growth in this region and to discuss unresolved regional geologic problems. The latter include: (1) the extent to which Mesozoic orogenesis (e.g., Siskiyou and Nevadan events plus the onset of Franciscan accretion) was driven by collision of continental or oceanic fragments versus changes in plate motion, (2) whether growth involved “accordion tectonics” whereby marginal basins (and associated fringing arcs) repeatedly opened and closed or was driven by the accretion of significant volumes of material exotic to North America, and (3) the origin of the Condrey Mountain schist, a composite low-grade unit occupying an enigmatic structural window in the central Klamaths—at odds with the east-dipping thrust sheet regional structural “rule.” Respectively, we assert that (1) if collision drove orogenesis, the requisite exotic materials are missing (we cannot rule out the possibility that such materials were removed via subduction and/or strike slip faulting); (2) opening and closure of the Josephine ophiolite-floored and Galice Formation–filled basin demonstrably occurred adjacent to North America; and (3) the inner Condrey Mountain schist domain is equivalent to the oldest clastic Franciscan subunit (the South Fork Mountain schist) and therefore represents trench assemblages underplated >100 km inboard of the subduction margin, presumably during a previously unrecognized phase of shallow-angle subduction. In aggregate, these relations suggest that the Klamath Mountains and adjacent Franciscan complex represent telescoped arc and forearc upper plate domains of a dynamic Mesozoic subduction zone, wherein the downgoing oceanic plate took a variety of trajectories into the mantle. We speculate that the downgoing plate contained alternating tracts of smooth and dense versus rough and buoyant lithosphere—the former gliding into the mantle (facilitating slab rollback and upper plate extension) and the latter enhancing basal traction (driving upper plate compression and slab-shallowing). Modern snapshots of similarly complex convergent settings are abundant in the western Pacific Ocean, with subduction of the Australian plate beneath New Guinea and adjacent island groups providing perhaps the best analog.more » « less
-
Abstract Differing interpretations of geophysical and geologic data have led to debate regarding continent-scale plate configuration, subduction polarity, and timing of collisional events on the western North American plate margin in pre–mid-Cretaceous time. One set of models involves collision and accretion of far-traveled “exotic” terranes against the continental margin along a west-dipping subduction zone, whereas a second set of models involves long-lived, east-dipping subduction under the continental margin and a fringing or “endemic” origin for many Mesozoic terranes on the western North American plate margin. Here, we present new detrital zircon U-Pb ages from clastic rocks of the Rattlesnake Creek and Western Klamath terranes in the Klamath Mountains of northern California and southern Oregon that provide a test of these contrasting models. Our data show that portions of the Rattlesnake Creek terrane cover sequence (Salt Creek assemblage) are no older than ca. 170–161 Ma (Middle–early Late Jurassic) and contain 62–83% Precambrian detrital zircon grains. Turbidite sandstone samples of the Galice Formation are no older than ca. 158–153 Ma (middle Late Jurassic) and contain 15–55% Precambrian detrital zircon grains. Based on a comparison of our data to published magmatic and detrital ages representing provenance scenarios predicted by the exotic and endemic models (a crucial geologic test), we show that our samples were likely sourced from the previously accreted, older terranes of the Klamath Mountains and Sierra Nevada, as well as active-arc sources, with some degree of contribution from recycled sources in the continental interior. Our observations are inconsistent with paleogeographic reconstructions that are based on exotic, intra-oceanic arcs formed far offshore of North America. In contrast, the incorporation of recycled detritus from older terranes of the Klamath Mountains and Sierra Nevada, as well as North America, into the Rattlesnake Creek and Western Klamath terranes prior to Late Jurassic deformation adds substantial support to endemic models. Our results suggest that during long-lived, east-dipping subduction, the opening and subsequent closing of the marginal Galice/Josephine basin occurred as a result of in situ extension and subsequent contraction. Our results show that tectonic models invoking exotic, intra-oceanic archipelagos composed of Cordilleran arc terranes fail a crucial geologic test of the terranes’ proposed exotic origin and support the occurrence of east-dipping, pre–mid-Cretaceous subduction beneath the North American continental margin.more » « less
An official website of the United States government
