The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake. 
                        more » 
                        « less   
                    
                            
                            Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka
                        
                    
    
            Abstract. Studying the retreat of the Patagonian Ice Sheet (PIS) during the last deglaciation represents an important opportunity to understand how ice sheets outside the polar regions have responded to deglacial changes in temperature and large-scale atmospheric circulation. At the northernmost extension of the PIS during the Last Glacial Maximum (LGM), the Chilean Lake District (CLD) was influenced by the southern westerly winds (SWW), which strongly modulated the hydrologic and heat budgets of the region. Despite progress in constraining the nature and timing of deglacial ice retreat across this area, considerable uncertainty in the glacial history still exists due to a lack of geologic constraints on past ice margin change. Where the glacial chronology is lacking, ice sheet models can provide important insight into our understanding of the characteristics and drivers of deglacial ice retreat. Here we apply the Ice Sheet and Sea-level System Model (ISSM) to simulate the LGM and last deglacial ice history of the PIS across the CLD at high spatial resolution (450 m). We present a transient simulation of ice margin change across the last deglaciation using climate inputs from the National Center for Atmospheric Research Community Climate System Model (CCSM3) Trace-21ka experiment. At the LGM, the simulated ice extent across the CLD agrees well with the most comprehensive reconstruction of PIS ice history (PATICE). Coincident with deglacial warming, ice retreat ensues after 19 ka, with large-scale ice retreat occurring across the CLD between 18 and 16.5 ka. By 17 ka, the northern portion of the CLD becomes ice free, and by 15 ka, ice only persists at high elevations as mountain glaciers and small ice caps. Our simulated ice history agrees well with PATICE for early deglacial ice retreat but diverges at and after 15 ka, where the geologic reconstruction suggests the persistence of an ice cap across the southern CLD until 10 ka. However, given the high uncertainty in the geologic reconstruction of the PIS across the CLD during the later deglaciation, this work emphasizes a need for improved geologic constraints on past ice margin change. While deglacial warming drove the ice retreat across this region, sensitivity tests reveal that modest variations in wintertime precipitation (∼10 %) can modulate the pacing of ice retreat by up to 2 ka, which has implications when comparing simulated outputs of ice margin change to geologic reconstructions. While we find that TraCE-21ka simulates large-scale changes in the SWW across the CLD that are consistent with regional paleoclimate reconstructions, the magnitude of the simulated precipitation changes is smaller than what is found in proxy records. From our sensitivity analysis, we can deduce that larger anomalies in precipitation, as found in paleoclimate proxies, may have had a large impact on modulating the magnitude and timing of deglacial ice retreat. This fact highlights an additional need for better constraints on the deglacial change in strength, position, and extent of the SWW as it relates to understanding the drivers of deglacial PIS behavior. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2121561
- PAR ID:
- 10522648
- Publisher / Repository:
- The Cryosphere
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 18
- Issue:
- 3
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 1381 to 1398
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Past sea levels provide important constraints on global ice volumes, rates of tectonic motion, ice-sheet sea-level feedbacks, and the migration of species through time. Beneath formerly glaciated regions, the marine limit, the maximum extent of sea-levels after glacial retreat, provides some of the oldest post-Last Glacial Maximum (LGM) sea-level constraints. However, although the elevations of marine limits are plentiful, they often remain undated. In this study, we provide new age and elevation constraints on the late Pleistocene relative sea-level (RSL) history at 12 sites along the eastern flanks of the former Minch Ice Stream (MnIS) of northwest Scotland. Optically stimulated luminescence (OSL) was used to date the highest and presumably oldest preserved RSL indicators immediately after ice-sheet retreat. Although slightly older than earlier estimates, our ages confirm the early deglacial age of ~16.2–19.5 ka for the raised shorelines of northwest Scotland with declining marine limits north of the Isle of Skye from 26.2 ± 4.8 m at Ardaneaskan to 12.8 ± 4.8 m elevation at Achiltibuie, the latter of which lies inside the moraines of the Wester Ross Readvance. Our new OSL ages suggest deglaciation of the MnIS may have been slightly earlier than previously thought, although our large error bars highlight the need for additional age constraints. Our new RSL data provide important constraints for Glacial Isostatic Adjustment (GIA) models for Scotland and shed light on the behavior of the former MnIS, thought to be susceptible to marine ice-sheet instability.more » « less
- 
            We test the hypothesis that glacier systems, located in continental regions proximal to the Laurentide Ice Sheet (LIS), had local ice maxima considerably earlier than the LIS maximum and thus before the insolation minima at ~21 ka. Ranges located in the northwest US exhibit earlier deglaciation timing between ~23 and 22 ka, except for the Yellowstone region where younger time-transgressive ages complicate regional interpretations and the northern Montana ice cap where late glacial ages have recently been produced. Constraining the glacial history of more ice sheet-proximal alpine glaciers provides insight into whether the contrasting maximum-ice times in the northern Rocky Mountains were caused by regional climatic differences, such as anticyclonic wind patterns driven by the presence of the LIS. In the Pioneer Mountains of Montana, we measured in situ cosmogenic 10Be in 35 boulders on moraines marking the maximum Late Pleistocene positions of alpine glaciers from three valleys. The 10Be samples produced a range of ages, spanning pre Bull Lake to the last glaciation (i.e., Pinedale/Marine Isotope Stage (MIS) 2). We find an average exposure age for initial deglaciation of 18.2 ±0.9 during the local Last Glacial Maximum, indicative of synchronous retreat in the Pioneer Mountains. The similarity of initial deglaciation timing of the Pioneer Mountain glaciers with the northwestern Yellowstone glacial system and northern MT ice cap suggests that topography more proximal to the LIS margin maintained full ice extent longer. Our findings, in context of previous work, suggest that in the case of the Pioneer Mountains their more proximal location to the ice margin may have delayed onset of deglaciation by greater exposure to local cooling from katabatic winds and/or additional moisture sourced from large ice-marginal glacial lakes, hence the lack of earlier deglacial ages like those found further to the west and east of the northern Rocky Mountain cordillera.more » « less
- 
            Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate.more » « less
- 
            Terrestrial proxies of wind direction spanning the last deglaciation suggest easterly winds were present near the Laurentide Ice Sheet margin in the North American midcontinent. However, the existence and spatial extent of such easterly winds have not been investigated with transient paleoclimate model simulations, which could provide improved dynamical context for interpreting the causes of these winds. Here we assess near-surface winds near the retreating southern Laurentide Ice Sheet margin using iTRACE, a transient simulation of deglacial climate from 20–11 ka. Near the south-central margin, simulated near-surface winds are northeasterly to easterly through the deglaciation, due to katabatic flow off the ice sheet and anticyclonic circulation. As the ice sheet retreats and the Laurentide High moves northeastward and weakens, near-surface northeasterly winds weaken. Meltwater fluxes also influence temperature and sea level pressure over the North Atlantic, leading to easterly wind anomalies over eastern to midwestern North America. The agreement between proxy and model wind directions is promising, although simulated easterly to northeasterly winds extend too far south in iTRACE relative to the proxy data. Agreement is also strongest in winter, spring, and fall, suggesting these may have been seasons with greater aeolian activity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    