This content will become publicly available on January 1, 2025
Abstract. Studying the retreat of the Patagonian Ice Sheet (PIS) during the last deglaciation represents an important opportunity to understand how ice sheets outside the polar regions have responded to deglacial changes in temperature and large-scale atmospheric circulation. At the northernmost extension of the PIS during the Last Glacial Maximum (LGM), the Chilean Lake District (CLD) was influenced by the southern westerly winds (SWW), which strongly modulated the hydrologic and heat budgets of the region. Despite progress in constraining the nature and timing of deglacial ice retreat across this area, considerable uncertainty in the glacial history still exists due to a lack of geologic constraints on past ice margin change. Where the glacial chronology is lacking, ice sheet models can provide important insight into our understanding of the characteristics and drivers of deglacial ice retreat. Here we apply the Ice Sheet and Sea-level System Model (ISSM) to simulate the LGM and last deglacial ice history of the PIS across the CLD at high spatial resolution (450 m). We present a transient simulation of ice margin change across the last deglaciation using climate inputs from the National Center for Atmospheric Research Community Climate System Model (CCSM3) Trace-21ka experiment. At the LGM, the simulated ice extent across the CLD agrees well with the most comprehensive reconstruction of PIS ice history (PATICE). Coincident with deglacial warming, ice retreat ensues after 19 ka, with large-scale ice retreat occurring across the CLD between 18 and 16.5 ka. By 17 ka, the northern portion of the CLD becomes ice free, and by 15 ka, ice only persists at high elevations as mountain glaciers and small ice caps. Our simulated ice history agrees well with PATICE for early deglacial ice retreat but diverges at and after 15 ka, where the geologic reconstruction suggests the persistence of an ice cap across the southern CLD until 10 ka. However, given the high uncertainty in the geologic reconstruction of the PIS across the CLD during the later deglaciation, this work emphasizes a need for improved geologic constraints on past ice margin change. While deglacial warming drove the ice retreat across this region, sensitivity tests reveal that modest variations in wintertime precipitation (∼10 %) can modulate the pacing of ice retreat by up to 2 ka, which has implications when comparing simulated outputs of ice margin change to geologic reconstructions. While we find that TraCE-21ka simulates large-scale changes in the SWW across the CLD that are consistent with regional paleoclimate reconstructions, the magnitude of the simulated precipitation changes is smaller than what is found in proxy records. From our sensitivity analysis, we can deduce that larger anomalies in precipitation, as found in paleoclimate proxies, may have had a large impact on modulating the magnitude and timing of deglacial ice retreat. This fact highlights an additional need for better constraints on the deglacial change in strength, position, and extent of the SWW as it relates to understanding the drivers of deglacial PIS behavior.
more » « less- Award ID(s):
- 2121561
- PAR ID:
- 10522648
- Publisher / Repository:
- The Cryosphere
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 18
- Issue:
- 3
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 1381 to 1398
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake.more » « less
-
We test the hypothesis that glacier systems, located in continental regions proximal to the Laurentide Ice Sheet (LIS), had local ice maxima considerably earlier than the LIS maximum and thus before the insolation minima at ~21 ka. Ranges located in the northwest US exhibit earlier deglaciation timing between ~23 and 22 ka, except for the Yellowstone region where younger time-transgressive ages complicate regional interpretations and the northern Montana ice cap where late glacial ages have recently been produced. Constraining the glacial history of more ice sheet-proximal alpine glaciers provides insight into whether the contrasting maximum-ice times in the northern Rocky Mountains were caused by regional climatic differences, such as anticyclonic wind patterns driven by the presence of the LIS. In the Pioneer Mountains of Montana, we measured in situ cosmogenic 10Be in 35 boulders on moraines marking the maximum Late Pleistocene positions of alpine glaciers from three valleys. The 10Be samples produced a range of ages, spanning pre Bull Lake to the last glaciation (i.e., Pinedale/Marine Isotope Stage (MIS) 2). We find an average exposure age for initial deglaciation of 18.2 ±0.9 during the local Last Glacial Maximum, indicative of synchronous retreat in the Pioneer Mountains. The similarity of initial deglaciation timing of the Pioneer Mountain glaciers with the northwestern Yellowstone glacial system and northern MT ice cap suggests that topography more proximal to the LIS margin maintained full ice extent longer. Our findings, in context of previous work, suggest that in the case of the Pioneer Mountains their more proximal location to the ice margin may have delayed onset of deglaciation by greater exposure to local cooling from katabatic winds and/or additional moisture sourced from large ice-marginal glacial lakes, hence the lack of earlier deglacial ages like those found further to the west and east of the northern Rocky Mountain cordillera.more » « less
-
null (Ed.)Abstract Understanding marine-terminating ice sheet response to past climate transitions provides valuable long-term context for observations of modern ice sheet change. Here, we reconstruct the last deglaciation of marine-terminating Cordilleran Ice Sheet (CIS) margins in Southeast Alaska and explore potential forcings of western CIS retreat. We combine 27 new cosmogenic 10 Be exposure ages, 13 recently published 10 Be ages, and 25 new 14 C ages from raised marine sediments to constrain CIS recession. Retreat from the outer coast was underway by 17 ka, and the inner fjords and sounds were ice-free by 15 ka. After 15 ka, the western margin of the CIS became primarily land-terminating and alpine glaciers disappeared from the outer coast. Isolated alpine glaciers may have persisted in high inland peaks until the early Holocene. Our results suggest that the most rapid phase of CIS retreat along the Pacific coast occurred between ~17 and 15 ka. This retreat was likely driven by processes operating at the ice-ocean interface, including sea level rise and ocean warming. CIS recession after ~15 ka occurred during a time of climatic amelioration in this region, when both ocean and air temperatures increased. These data highlight the sensitivity of marine-terminating CIS regions to deglacial climate change.more » « less
-
Abstract Atmospheric rivers (ARs) are an important driver of surface mass balance over today's Greenland and Antarctic ice sheets. Using paleoclimate simulations with the Community Earth System Model, we find ARs also had a key influence on the extensive ice sheets of the Last Glacial Maximum (LGM). ARs provide up to 53% of total precipitation along the margins of the eastern Laurentide ice sheet and up to 22%–27% of precipitation along the margins of the Patagonian, western Cordilleran, and western Fennoscandian ice sheets. Despite overall cold conditions at the LGM, surface temperatures during AR events are often above freezing, resulting in more rain than snow along ice sheet margins and conditions that promote surface melt. The results suggest ARs may have had an important role in ice sheet growth and melt during previous glacial periods and may have accelerated ice sheet retreat following the LGM.
-
The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. Sea level is relatively well constrained for the Last Glacial Maximum (LGM, 26,500 to 19,000 y ago, 26.5 to 19 ka) and the ensuing deglaciation. However, sea-level estimates for the period of ice-sheet growth before the LGM vary by > 60 m, an uncertainty comparable to the sea-level equivalent of the contemporary Antarctic Ice Sheet. Here, we constrain sea level prior to the LGM by reconstructing the flooding history of the shallow Bering Strait since 46 ka. Using a geochemical proxy of Pacific nutrient input to the Arctic Ocean, we find that the Bering Strait was flooded from the beginning of our records at 46 ka until 35.7 - 2.4 + 3.3 ka. To match this flooding history, our sea-level model requires an ice history in which over 50% of the LGM’s global peak ice volume grew after 46 ka. This finding implies that global ice volume and climate were not linearly coupled during the last ice age, with implications for the controls on each. Moreover, our results shorten the time window between the opening of the Bering Land Bridge and the arrival of humans in the Americas.more » « less