skip to main content

Title: Dispersive coupling between MoSe 2 and an integrated zero-dimensional nanocavity

Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step to study semiconductor quantum optics. Here we report on the signature of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2and a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity. This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum photonic platform.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Page Range / eLocation ID:
Article No. 59
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Deterministic positioning single site-controlled high symmetric InGaAs quantum dots (QDs) in (111)B-oriented GaAs photonic crystal cavities with nanometer-scale accuracy provides an idea component for building integrated quantum photonic circuits. However, it has been a long-standing challenge of improving cavityQ-factors in such systems. Here, by optimizing the trade-off between the cavity loss and QD spectral quality, we demonstrate our site-controlled QD-nanocavity system operating in the intermediate coupling regime mediated by phonon scattering, with the dynamic coexistence of strong and weak coupling. The cavity-exciton detuning-dependent micro-photoluminescence spectrum reveals concurrence of a trend of exciton-polariton mode avoided crossing, as a signature of Rabi doublet of the strongly coupled system. Meanwhile, a trend of keeping constant or slight blue shift of coupled exciton–cavity mode(CM) energy across zero-detuning is ascribed to the formation of collective states mediated by phonon-assisted coupling, and their rare partial out-of-synchronization linewidth-narrowing is linked to their coexisting strong-weak coupling regime. We further reveal the pump power-dependent anti-bunching photon statistical dynamics of this coexisting strong-weak coupled system and the optical features of strongly confined exciton-polaritons, and dark-exciton-like states. These observations demonstrate the potential capabilities of site-controlled QD-cavity systems as deterministic quantum nodes for on-chip quantum information processing and provide guidelines for future device optimization for achieving the strong coupling regime.

    more » « less
  2. Abstract

    Quantum state control of two‐level emitters is fundamental for many information processing, metrology, and sensing applications. However, quantum‐coherent photonic control of solid‐state emitters has traditionally been limited to cryogenic environments, which are not compatible with implementation in scalable, broadly distributed technologies. In contrast, plasmonic nano‐cavities with deep sub‐wavelength mode volumes have recently emerged as a path toward room temperature quantum control. However, optimization, control, and modeling of the cavity mode volume are still in their infancy. Here recent demonstrations of plasmonic tip‐enhanced strong coupling (TESC) with a configurable nano‐tip cavity are extended to perform a systematic experimental investigation of the cavity‐emitter interaction strength and its dependence on tip position, augmented by modeling based on both classical electrodynamics and a quasinormal mode framework. Based on this work, a perspective for nano‐cavity optics is provided as a promising tool for room temperature control of quantum coherent interactions that could spark new innovations in fields from quantum information and quantum sensing to quantum chemistry and molecular opto‐mechanics.

    more » « less
  3. The heterogeneous integration of silicon with III-V materials provides a way to overcome silicon’s limited optical properties toward a broad range of photonic applications. Hybrid modes are a promising way to integrate such heterogeneous Si/III-V devices, but it remains unclear how to utilize these modes to achieve photonic crystal cavities. Herein, using 3D finite-difference time-domain simulations, we propose a hybrid Si-GaAs photonic crystal cavity design that operates at telecom wavelengths and can be fabricated without requiring careful alignment. The hybrid cavity consists of a patterned silicon waveguide that is coupled to a wider GaAs slab featuring InAs quantum dots. We show that by changing the width of the silicon cavity waveguide, we can engineer the hybrid modes and control the degree of coupling to the active material in the GaAs slab. This provides the ability to tune the cavity quality factor while balancing the device’s optical gain and nonlinearity. With this design, we demonstrate cavity mode confinement in the GaAs slab without directly patterning it, enabling strong interaction with the embedded quantum dots for applications such as low-power-threshold lasing and optical bistability (156 nW and 18.1µW, respectively). This heterogeneous integration of an active III-V material with silicon via a hybrid cavity design suggests a promising approach for achieving on-chip light generation and low-power nonlinear platforms.

    more » « less
  4. Abstract

    Quantum interactions between transition metal dichalcogenides (TMDs) and optical cavities are rapidly becoming an appealing research topic since these interactions underly a broad spectrum of optical phenomena. Here, we fabricate a simple device in which coherent strong coupling interactions occur between a photonic crystal (PhC) slab and monolayer tungsten disulfide (WS2). Both steady‐state angle‐resolved spectroscopy and transient absorption microscopy (TAM) are employed to explore the coupling behavior of this device. Specifically, anticrossing dispersions are observed in the hybrid device, indicating a Rabi splitting of 40.2 meV. A newly formed spectral feature emerges in the transient absorption (TA) spectrum of this polariton device under near‐resonant excitation, which is subsequently evidenced to be a signature of the upper hybrid exciton–polariton state. Moreover, by carefully analyzing the ultrafast responses of both bare WS2and the WS2‐PhC polariton device excited both off resonance and near resonance, it is found that nonequilibrium thermal decay induces Coulombic screening in the monolayer WS2, which has a major impact on the formation of exciton–polariton. The results of this work could not only improve the current understanding of photophysics in the strong light–matter coupling regime but also lay the foundation for tailoring the development of TMD‐based coherent devices.

    more » « less
  5. Abstract

    Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two‐dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high‐power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton‐polaritons presents an attractive approach to control optical responses without the need for large magnets or high‐intensity optical pump powers.

    more » « less