skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Trends and Advances of Co3O4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater
Antibiotic resistance is a formidable global threat. Wastewater is a contributing factor to the prevalence of antibiotic-resistant bacteria and genes in the environment. There is increased interest evident from research trends in exploring nanoparticles for the remediation of antibiotic-resistant bacteria. Cobalt oxide (Co3O4) nanoparticles have various technological, biomedical, and environmental applications. Beyond the environmental remediation applications of degradation or adsorption of dyes and organic pollutants, there is emerging research interest in the environmental remediation potential of Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant and/or pathogenic bacteria. This review focuses on the recent trends and advances in remediation using Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant or pathogenic bacteria from wastewater. Additionally, challenges and future directions that need to be addressed are discussed.  more » « less
Award ID(s):
2019435
PAR ID:
10335792
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
7
ISSN:
2079-4991
Page Range / eLocation ID:
1129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose of ReviewMounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the generaAcinetobacter,Aeromonas, andPseudomonasas key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. Recent FindingsRecent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms.Acinetobacter,Aeromonas,andPseudomonasspecies are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. SummaryThe search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments. 
    more » « less
  2. Abstract Untreated sewage discharges leading to environmental contamination are increasingly common in communities across the globe. The cause of these discharges ranges from sewer lines in disrepair, blockages, and in the era of more extreme wet weather events, the infiltration of stormwater into the system during heavy downpours. Regardless of the driver of these events, the aftermath results in raw sewage spilling into local waterways, city streets, and commercial and residential structures. Historical research in public health has thoroughly documented the connection between exposure to untreated sewage and waterborne disease. Recent research has detected antibiotic-resistant bacteria at wastewater treatment facilities at a time when deaths by antibiotic-resistant infections are on the rise. However, no research has explored the exposure pathways of antibiotic-resistant bacteria during sanitary sewer overflows and household-level sewage backups. In this commentary, we aim to introduce this new frontier of environmental health risks and disasters. To do this, we describe the history of modern sanitation and sewer infrastructure with a particular focus on wastewater infrastructure in the U.S. We also explore emerging risks and current methods for identifying antibiotic-resistant bacteria in the environment. We end with future directions for interdisciplinary scholarship at the nexus of urban planning, engineering, and public health by introducing the Water Emergency Team (WET) Project. WET is a community-based multi-method effort to identify environmental risks in the aftermath of household backups through (1) residential surveys, (2) indoor visual inspections, (3) environmental sampling, and (4) laboratory processing and reporting. Our hope is that by introducing this comprehensive approach to environmental risks analysis, other scholars will join us in this effort and ultimately towards addressing this grand challenge of our time. 
    more » « less
  3. The rapid discharge of antibiotic pollutants from pharmaceutical industries into natural water sources poses a significant threat to human health and the environment. Conventional water treatment methods often fail to effectively remove these contaminants, leading to a pressing need for eco-friendly degradation approaches. This study focused on synthesizing pure and iron-doped zinc sulfide (ZnS) nanoparticles using a microwave-assisted technique in aqueous solution to evaluate their photocatalytic efficiency in degrading the antibiotic cephalexin. High-resolution transmission electron microscopy (TEM) characterized the synthesized nanoparticles, revealing crystalline structures approximately 5 nm in size. The photocatalytic capacity was assessed using a spectrophotometric method, demonstrating that both pure and iron-doped ZnS nanostructures exhibit higher efficiency in degrading cephalexin under UV irradiation. These findings underscore the potential of ZnS nanostructures for photocatalytic applications in environmental remediation, particularly in degrading resistant antibiotic pollutants, highlighting their role in addressing organic pollution in water sources. 
    more » « less
  4. Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications. 
    more » « less
  5. For over a century, environmental engineers have attempted to control the prokaryotic community biological wastewater treatment processes, but there is growing interest in both understanding and harnessing the activity of phages in wastewater bioprocesses. While phages are known to be present and abundant, their ecological role, potential benefits, and impacts on wastewater biological processes are not fully understood. Fundamental knowledge on how phages infect host cells from relatively simple pure culture studies alongside environmental studies from marine and soil systems can be used to predict the potential impact of phages in diverse and dynamic wastewater environments. This frontier review is focused on what is known about the molecular mechanisms by which phages infect bacteria and how that could apply to biological process control and operation within wastewater treatment systems. Here, we specifically focus on highlights from studies on the molecular mechanisms that drive lysis and lysogeny within phage cells and the impacts on the dissemination of antibiotic resistance genes and nutrient removal within a biological wastewater process. 
    more » « less