Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700–1000 nm) and shortwave infrared (SWIR, 1000–1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR.
more »
« less
SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers
Shortwave infrared (SWIR) emission has great potential for deep-tissue in vivo biological imaging with high resolution. In this article, the synthesis and characterization of two new xanthene-based RosIndolizine dyes coded Ph RosIndz and tol RosIndz is presented. The dyes are characterized via femtosecond transient absorption spectroscopy as well as steady-state absorption and emission spectroscopies. The emission of these dyes is shown in the SWIR region with peak emission at 1097 nm. Tol RosIndz was encapsulated with an amphiphilic linear dendritic block co-polymer (LDBC) coded 10-PhPCL-G3 with high uptake yield. Further, cellular toxicity was examined in vitro using HEK (human embryonic kidney) cells where a >90% cell viability was observed at practical concentrations of the encapsulated dye which indicates low toxicity and reasonable biocompatibility.
more »
« less
- Award ID(s):
- 1757220
- PAR ID:
- 10335934
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 11
- Issue:
- 45
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 27832 to 27836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT). The DFT computations provide optimized geometries from which the excited state transition wavelengths and associated oscillator strengths and orbital overlaps are computed. While absorption is used as a stand-in for emission, the longer the absorption wavelength, the longer the emission should be as well for molecules of this type. Nearly 100 novel dyes reported in this work have electronic absorptions at or beyond 1200 nm, opening the possibility for future synthesis and experimental characterization of new molecular dyes with promising properties for bioimaging.more » « less
-
A new family of fluorescent thiophene and thienothiophene-containing squaraine dyes is described with tunable wavelengths that cover the absorption/emission range of 600–800 nm. The deep-red and near-infrared fluorescent compounds were easily prepared by simple synthesis and purification methods. Spectral studies showed that each squaraine was rapidly encapsulated by a tetralactam macrocycle, with nanomolar affinity in water, to produce a threaded supramolecular complex with high chemical stability, increased fluorescence quantum yield, and decreased fluorescence quenching upon dye self-aggregation. Energy transfer within the supramolecular complex permitted multiplex emission. That is, two separate dyes with fluorescence emission bands that match the popular Cy5 and Cy7 channels, could be simultaneously excited with a beam of 375 nm light. A broad range of practical applications is envisioned in healthcare diagnostics, microscopy, molecular imaging, and fluorescence-guided surgery.more » « less
-
Abstract Dibenzothiophene 5,5‐dioxide (DBTOO) derivatives have recently been shown to processes utility as fluorescent cell dyes. In an effort to extend the functionality of DBTOO‐based dyes to include the visualization of cellular membranes, two lipophilic DBTOO were synthesized and their ability to incorporate into the plasma membrane of HeLa cells was examined by fluorescent microscopy. The photophysical properties of the two new DBTOO derivatives were determined and both have good fluorescent quantum yields and a visible blue emission. Due to agreeable wavelengths of excitation and emission, a standard 4′,6‐diamindino‐2‐phenylindole (DAPI) filter set worked well with these dyes. After co‐staining, it was confirmed that both DBTOO dyes localized in the plasma membrane. The quality of the overlap was quantified using Pearson correlation coefficient, which indicated a strong overlap between the DBTOO dyes and the standard plasma membrane dye. The novel dyes also displayed relatively low toxicity to the HeLa cells with IC50between 10 and 100 µm. Thus, this work reports a new use of DBTOO derivatives as fluorescent microscopy stains.more » « less
-
Abstract Small organic molecules absorbing and emitting in the shortwave infrared (SWIR, 1000–2000 nm) region are desirable for biological imaging applications due to low auto‐fluorescence, reduce photon scattering, and good tissue penetration depth of photons which allows forin vivoimaging with high resolution and sensitivity. Si‐substituted xanthene‐based fluorophores with indolizine donors have demonstrated some of the longest wavelengths of absorption and emission from organic dyes. This work seeks to compare an indolizine heterocyclic nitrogen with dimethyl aniline nitrogen donors on otherwise identical Si‐substituted xanthene fluorophoresviaoptical spectroscopy, computational chemistry and electrochemistry. Three donors are compared including an indolizine donor, a ubiquitous dimethyl aniline donor, and a vinyl dimethyl aniline group that keeps the number of π‐bonds consistent with indolizine. Significantly higher quantum yields and molar absorptivity are observed in these studies for a dimethylamine‐based donor relative to a simple indolizine donor absorbing and emitting at similar wavelengths (~1312 nm emission). Substantially longer wavelengths are obtainable by appending aniline‐based groups to the indolizine donor (~1700 nm) indicating longer wavelengths can be accessed with indolizine donors while stronger emitters can be accessed with anilines in place of indolizine.more » « less
An official website of the United States government

