skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanisms for gas-phase molecular formation of neutral formaldehyde (H 2 CO) in cold astrophysical regions
Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood. Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H 2 CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs). Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes. Results. The most probable reactions that produce H 2 CO in cold astrophysical regions are: 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + O⋅( 3 P) in DMCs, ⋅ 3 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in DCDMCs, and ⋅CH 3 + ⋅O( 3 P) → 1 H 2 CO + ⋅H in region III, ⋅CH 3 +⋅O( 1 D) → 1 H 2 CO + ⋅H in region II, and 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in region I belonging to CELMPs. Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H 2 CO in cold regions for the gas-phase are CH 2 (a 1 A 1 ), and ⋅CH 2 (X 3 B 1 ) combined with ⋅O 2 ( 3 Σ g ) and ⋅CH 3 ( 2 A ” ) + ⋅O( 3 P) / O( 1 D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H 2 CO molecular formation.  more » « less
Award ID(s):
1757220
PAR ID:
10335940
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
656
ISSN:
0004-6361
Page Range / eLocation ID:
A148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The challenges associated with the out-of-plane bending problem in multiply-bonded hydrocarbon molecules can be mitigated in quartic force field analyses by varying the step size in the out-of-plane coordinates. Carbon is a highly prevalent element in astronomical and terrestrial environments, but this major piece of its spectra has eluded theoretical examinations for decades. Earlier explanations for this problem focused on method and basis set issues, while this work seeks to corroborate the recent diagnosis as a numerical instability problem related to the generation of the potential energy surface. Explicit anharmonic frequencies for c-(CH)C 3 H 2 + are computed using a quartic force field and the CCSD(T)-F12b method with cc-pVDZ-F12, cc-pVTZ-F12, and aug-cc-pVTZ basis sets. The first of these is shown to offer accuracy comparable to that of the latter two with a substantial reduction in computational time. Additionally, c-(CH)C 3 H 2 + is shown to have two fundamental frequencies at the onset of the interstellar unidentified infrared bands, at 5.134 and 6.088 μm or 1947.9 and 1642.6 cm −1 , respectively. This suggests that the results in the present study should assist in the attribution of parts of these aromatic bands, as well as provide data in support of the laboratory or astronomical detection of c-(CH)C 3 H 2 + . 
    more » « less
  2. Understanding the nature of high-redshift dusty galaxies requires a comprehensive view of their interstellar medium (ISM) and molecular complexity. However, the molecular ISM at high redshifts is commonly studied using only a few species beyond12C16O, limiting our understanding. In this paper, we present the results of deep 3 mm spectral line surveys using the NOrthern Extended Millimeter Array (NOEMA) targeting two strongly lensed dusty galaxies observed when the Universe was less than 1.8 Gyr old: APM 08279+5255, a quasar at redshiftz= 3.911, and NCv1.143 (H-ATLAS J125632.7+233625), az= 3.565 starburst galaxy. The spectral line surveys cover rest-frame frequencies from about 330 to 550 GHz for both galaxies. We report the detection of 38 and 25 emission lines in APM 08279+5255 and NCv1.143, respectively. These lines originate from 17 species, namely CO,13CO, C18O, CN, CCH, HCN, HCO+, HNC, CS, C34S, H2O, H3O+, NO, N2H+, CH, c-C3H2, and the vibrationally excited HCN and neutral carbon. The spectra reveal the chemical richness and the complexity of the physical properties of the ISM. By comparing the spectra of the two sources and combining the analysis of the molecular gas excitation, we find that the physical properties and the chemical imprints of the ISM are different: the molecular gas is more excited in APM 08279+5255, which exhibits higher molecular gas temperatures and densities compared to NCv1.143; the molecular abundances in APM 08279+5255 are akin to the values of local active galactic nuclei (AGN), showing boosted relative abundances of the dense gas tracers that might be related to high-temperature chemistry and/or the X-ray-dominated regions, while NCv1.143 more closely resembles local starburst galaxies. The most significant differences between the two sources are found in H2O: the 448 GHz ortho-H2O(423 − 330) line is significantly brighter in APM 08279+5255, which is likely linked to the intense far-infrared radiation from the dust powered by AGN. Our astrochemical model suggests that, at such high column densities, far-ultraviolet radiation is less important in regulating the ISM, while cosmic rays (and/or X-rays and shocks) are the key players in shaping the molecular abundances and the initial conditions of star formation. Both our observed CO isotopologs line ratios and the derived extreme ISM conditions (high gas temperatures, densities, and cosmic-ray ionization rates) suggest the presence of a top-heavy stellar initial mass function. From the ∼330–550 GHz continuum, we also find evidence of nonthermal millimeter flux excess in APM 08279+5255 that might be related to the central supermassive black hole. Such deep spectral line surveys open a new window into the physics and chemistry of the ISM and the radiation field of galaxies in the early Universe. 
    more » « less
  3. Recently, over 200 molecules have been detected in the interstellar medium (ISM), with about one third being complex organic molecules (COMs), molecules containing six or more atoms. Over the last few decades, astrophysical laboratory experiments have shown that several COMs are formed via interaction of ionizing radiation within ices deposited on interstellar dust particles at 10 K (H 2 O, CH 3 OH, CO, CO 2 , CH 4 , NH 3 ). However, there is still a lack of understanding of the chemical complexity that is available through individual ice constituents. The present research investigates experimentally the synthesis of carbon, hydrogen, and oxygen bearing COMs from interstellar ice analogues containing carbon monoxide (CO) and methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), or acetylene (C 2 H 2 ) exposed to ionizing radiation. Utilizing online and in situ techniques, such as infrared spectroscopy and tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), specific isomers produced could be characterized. A total of 12 chemically different groups were detected corresponding to C 2 H n O ( n = 2, 4, 6), C 3 H n O ( n = 2, 4, 6, 8), C 4 H n O ( n = 4, 6, 8, 10), C 5 H n O ( n = 4, 6, 8, 10), C 6 H n O ( n = 4, 6, 8, 10, 12, 14), C 2 H n O 2 ( n = 2, 4), C 3 H n O 2 ( n = 4, 6, 8), C 4 H n O 2 ( n = 4, 6, 8, 10), C 5 H n O 2 ( n = 6, 8), C 6 H n O 2 ( n = 8, 10, 12), C 4 H n O 3 ( n = 4, 6, 8), and C 5 H n O 3 ( n = 6, 8). More than half of these isomer specifically identified molecules have been identified in the ISM, and the remaining COMs detected here can be utilized to guide future astronomical observations. Of these isomers, three groups – alcohols, aldehydes, and molecules containing two of these functional groups – displayed varying degrees of unsaturation. Also, the detection of 1-propanol, 2-propanol, 1-butanal, and 2-methyl-propanal has significant implications as the propyl and isopropyl moieties (C 3 H 7 ), which have already been detected in the ISM via propyl cyanide and isopropyl cyanide, could be detected in our laboratory studies. General reaction mechanisms for their formation are also proposed, with distinct follow-up studies being imperative to elucidate the complexity of COMs synthesized in these ices. 
    more » « less
  4. Context. Atomic gas in the diffuse interstellar medium (ISM) is organized in filamentary structures. These structures usually host cold and dense molecular clumps. The Galactic magnetic field is considered to play an important role in the formation of these clumps. Aims. Our goal is to explore the role of the magnetic field in the H I -H 2 transition process. Methods. We targeted a diffuse ISM filamentary cloud toward the Ursa Major cirrus where gas transitions from atomic to molecular. We probed the magnetic field properties of the cloud with optical polarization observations. We performed multiwavelength spectroscopic observations of different species in order to probe the gas phase properties of the cloud. We observed the CO ( J = 1−0) and ( J = 2−1) lines in order to probe the molecular content of the cloud. We also obtained observations of the [C ii ] 157.6 µ m emission line in order to trace the CO-dark H 2 gas and estimate the mean volume density of the cloud. Results. We identified two distinct subregions within the cloud. One of the regions is mostly atomic, while the other is dominated by molecular gas, although most of it is CO-dark. The estimated plane-of-the-sky magnetic field strength between the two regions remains constant within uncertainties and lies in the range 13–30 µG. The total magnetic field strength does not scale with density. This implies that gas is compressed along the field lines. We also found that turbulence is trans-Alfvénic, with M A ≈ 1. In the molecular region, we detected an asymmetric CO clump whose minor axis is closer, with a 24° deviation, to the mean magnetic field orientation than the angle of its major axis. The H i velocity gradients are in general perpendicular to the mean magnetic field orientation except for the region close to the CO clump, where they tend to become parallel. This phenomenon is likely related to gas undergoing gravitational infall. The magnetic field morphology of the target cloud is parallel to the H i column density structure of the cloud in the atomic region, while it tends to become perpendicular to the H i structure in the molecular region. On the other hand, the magnetic field morphology seems to form a smaller offset angle with the total column density shape (including both atomic and molecular gas) of this transition cloud. Conclusions. In the target cloud where the H i –H 2 transition takes place, turbulence is trans-Alfvénic, and hence the magnetic field plays an important role in the cloud dynamics. Atomic gas probably accumulates preferentially along the magnetic field lines and creates overdensities where molecular gas can form. The magnetic field morphology is probed better by the total column density shape of the cloud, and not its H i column density shape. 
    more » « less
  5. Abstract We compare mid-infrared (mid-IR), extinction-corrected H α , and CO (2–1) emission at 70–160 pc resolution in the first four PHANGS–JWST targets. We report correlation strengths, intensity ratios, and power-law fits relating emission in JWST’s F770W, F1000W, F1130W, and F2100W bands to CO and H α . At these scales, CO and H α each correlate strongly with mid-IR emission, and these correlations are each stronger than the one relating CO to H α emission. This reflects that mid-IR emission simultaneously acts as a dust column density tracer, leading to a good match with the molecular-gas-tracing CO, and as a heating tracer, leading to a good match with the H α . By combining mid-IR, CO, and H α at scales where the overall correlation between cold gas and star formation begins to break down, we are able to separate these two effects. We model the mid-IR above I ν = 0.5 MJy sr −1 at F770W, a cut designed to select regions where the molecular gas dominates the interstellar medium (ISM) mass. This bright emission can be described to first order by a model that combines a CO-tracing component and an H α -tracing component. The best-fitting models imply that ∼50% of the mid-IR flux arises from molecular gas heated by the diffuse interstellar radiation field, with the remaining ∼50% associated with bright, dusty star-forming regions. We discuss differences between the F770W, F1000W, and F1130W bands and the continuum-dominated F2100W band and suggest next steps for using the mid-IR as an ISM tracer. 
    more » « less