Five substituted cyclopropenylidene derivatives (
- Award ID(s):
- 1757220
- PAR ID:
- 10335940
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 656
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract c -C3HX, X=CN, OH, F, NH2), all currently undetected in the interstellar medium (ISM), are found herein to have mechanistically viable, gas-phase formation pathways through neutral–neutral additions of ·X ontoc -C3H2. The detection and predicted formation mechanism ofc -C3HC2H introduces a need for the chemistry ofc -C3H2and any possible derivatives to be more fully explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations provide exothermicities of additions of various radical species toc -C3H2, alongside energies of submerged intermediates that are crossed to result in product formation. Of the novel reaction mechanisms proposed, the addition of the cyano radical is the most exothermic at -16.10 kcal mol−1. All five products are found to or are expected to have at least one means of associating barrierlessly to form a submerged intermediate, a requirement for the cold chemistry of the ISM. The energetically allowed additions arise as a result of the strong electrophilicity of the radical species as well as the product stability gained through substituent-ring conjugation. -
null (Ed.)The challenges associated with the out-of-plane bending problem in multiply-bonded hydrocarbon molecules can be mitigated in quartic force field analyses by varying the step size in the out-of-plane coordinates. Carbon is a highly prevalent element in astronomical and terrestrial environments, but this major piece of its spectra has eluded theoretical examinations for decades. Earlier explanations for this problem focused on method and basis set issues, while this work seeks to corroborate the recent diagnosis as a numerical instability problem related to the generation of the potential energy surface. Explicit anharmonic frequencies for c-(CH)C 3 H 2 + are computed using a quartic force field and the CCSD(T)-F12b method with cc-pVDZ-F12, cc-pVTZ-F12, and aug-cc-pVTZ basis sets. The first of these is shown to offer accuracy comparable to that of the latter two with a substantial reduction in computational time. Additionally, c-(CH)C 3 H 2 + is shown to have two fundamental frequencies at the onset of the interstellar unidentified infrared bands, at 5.134 and 6.088 μm or 1947.9 and 1642.6 cm −1 , respectively. This suggests that the results in the present study should assist in the attribution of parts of these aromatic bands, as well as provide data in support of the laboratory or astronomical detection of c-(CH)C 3 H 2 + .more » « less
-
ABSTRACT Nearly two decades since the detection of cyclopropenone (c-C3H2O) in the interstellar medium (ISM), the understanding of how this molecule comes to be remains incomplete. Many hypotheses place the ubiquitous hydrocarbon c-C3H2 at the centre of such discussions. However, insights into c-C3H2 chemistry are further complicated by the recent detection of ethynyl cyclopropenylidene (c-C3HC2H) and the observation of a radio line possibly belonging to methylenecyclopropene (c-C3H2CH2). In a necessary reconciliation of past and current work on the chemical capabilities of c-C3H2 in interstellar environments, the formation pathways of several functionalized cyclopropenes from c-C3H2 and a hydrogenated radical are explored. Chemically accurate CCSD(T)-F12/cc-pVTZ-F12 calculations are used to evaluate the energies of reaction and generate structures along the reaction pathway for formation products deemed chemically plausible. Potential energy scans are used to include or rule out certain paths to product formation based on conformation to the necessary requirements of cold interstellar chemistry. Four functionalized cyclopropenes in addition to c-C3H2O have net exothermic reactions when forming from c-C3H2 (c-C3H2CC, c-C3H2S, c-C3H2NH, and c-C3H2CH2). The former three are found to have reaction profiles favourable for formation in the cold ISM, while c-C3H2CH2 can only form by passage through an association barrier that must be mitigated by an energy source of some kind. c-C3H2S and c-C3H2NH are the best candidates for new spectroscopic searches. A complete detection of c-C3H2CH2 is necessary to fully understand cyclopropenylidene chemistry in the ISM.
-
ABSTRACT The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)‐F12b/cc‐pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)‐F12b/cc‐pVTZ for the cubic and quartic terms: the F12‐TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum‐containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally‐accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12‐TcCR+TZ QFF consistently produces the most accurate results compared to both gas‐phase and Ar‐matrix experimental data. This method combines the accuracy of the composite F12‐TcCR energies along with the numerical stability of non‐composite anharmonic terms where the non‐rigid nature of aluminum bonding can be sufficiently treated.
-
Understanding the nature of high-redshift dusty galaxies requires a comprehensive view of their interstellar medium (ISM) and molecular complexity. However, the molecular ISM at high redshifts is commonly studied using only a few species beyond12C16O, limiting our understanding. In this paper, we present the results of deep 3 mm spectral line surveys using the NOrthern Extended Millimeter Array (NOEMA) targeting two strongly lensed dusty galaxies observed when the Universe was less than 1.8 Gyr old: APM 08279+5255, a quasar at redshift
z = 3.911, and NCv1.143 (H -ATLAS J125632.7+233625), az = 3.565 starburst galaxy. The spectral line surveys cover rest-frame frequencies from about 330 to 550 GHz for both galaxies. We report the detection of 38 and 25 emission lines in APM 08279+5255 and NCv1.143, respectively. These lines originate from 17 species, namely CO,13CO, C18O, CN, CCH, HCN, HCO+, HNC, CS, C34S, H2O, H3O+, NO, N2H+, CH, c-C3H2, and the vibrationally excited HCN and neutral carbon. The spectra reveal the chemical richness and the complexity of the physical properties of the ISM. By comparing the spectra of the two sources and combining the analysis of the molecular gas excitation, we find that the physical properties and the chemical imprints of the ISM are different: the molecular gas is more excited in APM 08279+5255, which exhibits higher molecular gas temperatures and densities compared to NCv1.143; the molecular abundances in APM 08279+5255 are akin to the values of local active galactic nuclei (AGN), showing boosted relative abundances of the dense gas tracers that might be related to high-temperature chemistry and/or the X-ray-dominated regions, while NCv1.143 more closely resembles local starburst galaxies. The most significant differences between the two sources are found in H2O: the 448 GHz ortho-H2O(423 − 330) line is significantly brighter in APM 08279+5255, which is likely linked to the intense far-infrared radiation from the dust powered by AGN. Our astrochemical model suggests that, at such high column densities, far-ultraviolet radiation is less important in regulating the ISM, while cosmic rays (and/or X-rays and shocks) are the key players in shaping the molecular abundances and the initial conditions of star formation. Both our observed CO isotopologs line ratios and the derived extreme ISM conditions (high gas temperatures, densities, and cosmic-ray ionization rates) suggest the presence of a top-heavy stellar initial mass function. From the ∼330–550 GHz continuum, we also find evidence of nonthermal millimeter flux excess in APM 08279+5255 that might be related to the central supermassive black hole. Such deep spectral line surveys open a new window into the physics and chemistry of the ISM and the radiation field of galaxies in the early Universe.