While machine learning approaches are rapidly being applied to hydrologic problems, physics-informed approaches are still relatively rare. Many successful deep-learning applications have focused on point estimates of streamflow trained on stream gauge observations over time. While these approaches show promise for some applications, there is a need for distributed approaches that can produce accurate two-dimensional results of model states, such as ponded water depth. Here, we demonstrate a 2D emulator of the Tilted V catchment benchmark problem with solutions provided by the integrated hydrology model ParFlow. This emulator model can use 2D Convolution Neural Network (CNN), 3D CNN, and U-Net machine learning architectures and produces time-dependent spatial maps of ponded water depth from which hydrographs and other hydrologic quantities of interest may be derived. A comparison of different deep learning architectures and hyperparameters is presented with particular focus on approaches such as 3D CNN (that have a time-dependent learning component) and 2D CNN and U-Net approaches (that use only the current model state to predict the next state in time). In addition to testing model performance, we also use a simplified simulation based inference approach to evaluate the ability to calibrate the emulator to randomly selected simulations and the match between ML calibrated input parameters and underlying physics-based simulation.
more »
« less
Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML
Integrated hydrologic models solve coupled mathematical equations that represent natural processes, including groundwater, unsaturated, and overland flow. However, these models are computationally expensive. It has been recently shown that machine leaning (ML) and deep learning (DL) in particular could be used to emulate complex physical processes in the earth system. In this study, we demonstrate how a DL model can emulate transient, three-dimensional integrated hydrologic model simulations at a fraction of the computational expense. This emulator is based on a DL model previously used for modeling video dynamics, PredRNN. The emulator is trained based on physical parameters used in the original model, inputs such as hydraulic conductivity and topography, and produces spatially distributed outputs (e.g., pressure head) from which quantities such as streamflow and water table depth can be calculated. Simulation results from the emulator and ParFlow agree well with average relative biases of 0.070, 0.092, and 0.032 for streamflow, water table depth, and total water storage, respectively. Moreover, the emulator is up to 42 times faster than ParFlow. Given this promising proof of concept, our results open the door to future applications of full hydrologic model emulation, particularly at larger scales.
more »
« less
- PAR ID:
- 10336010
- Date Published:
- Journal Name:
- Water
- Volume:
- 13
- Issue:
- 23
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 3393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This article presents a hydrological reconstruction of the Upper Colorado River Basin with an hourly temporal resolution, and 1-km spatial resolution from October 1982 to September 2019. The validated dataset includes a suite of hydrologic variables including streamflow, water table depth, snow water equivalent (SWE) and evapotranspiration (ET) simulated by an integrated hydrological model, ParFlow-CLM. The dataset was validated over the period with a combination of point observations and remotely sensed products. These datasets provide a long-term, natural-flow, simulation for one of the most over-allocated basins in the world.more » « less
-
Abstract Integrated hydrologic models can simulate coupled surface and subsurface processes but are computationally expensive to run at high resolutions over large domains. Here we develop a novel deep learning model to emulate subsurface flows simulated by the integrated ParFlow‐CLM model across the contiguous US. We compare convolutional neural networks like ResNet and UNet run autoregressively against our novel architecture called the Forced SpatioTemporal RNN (FSTR). The FSTR model incorporates separate encoding of initial conditions, static parameters, and meteorological forcings, which are fused in a recurrent loop to produce spatiotemporal predictions of groundwater. We evaluate the model architectures on their ability to reproduce 4D pressure heads, water table depths, and surface soil moisture over the contiguous US at 1 km resolution and daily time steps over the course of a full water year. The FSTR model shows superior performance to the baseline models, producing stable simulations that capture both seasonal and event‐scale dynamics across a wide array of hydroclimatic regimes. The emulators provide over 1,000× speedup compared to the original physical model, which will enable new capabilities like uncertainty quantification and data assimilation for integrated hydrologic modeling that were not previously possible. Our results demonstrate the promise of using specialized deep learning architectures like FSTR for emulating complex process‐based models without sacrificing fidelity.more » « less
-
Abstract Integrated hydrological modeling is an effective method for understanding interactions between parts of the hydrologic cycle, quantifying water resources, and furthering knowledge of hydrologic processes. However, these models are dependent on robust and accurate datasets that physically represent spatial characteristics as model inputs. This study evaluates multiple data‐driven approaches for estimating hydraulic conductivity and subsurface properties at the continental‐scale, constructed from existing subsurface dataset components. Each subsurface configuration represents upper (unconfined) hydrogeology, lower (confined) hydrogeology, and the presence of a vertical flow barrier. Configurations are tested in two large‐scale U.S. watersheds using an integrated model. Model results are compared to observed streamflow and steady state water table depth (WTD). We provide model results for a range of configurations and show that both WTD and surface water partitioning are important indicators of performance. We also show that geology data source, total subsurface depth, anisotropy, and inclusion of a vertical flow barrier are the most important considerations for subsurface configurations. While a range of configurations proved viable, we provide a recommended Selected National Configuration 1 km resolution subsurface dataset for use in distributed large‐and continental‐scale hydrologic modeling.more » « less
-
Climate change is increasingly impacting water availability. National-scale hydrologic models simulate streamflow resulting from many important processes, but often without processes such as human water use and management activities. This work explores and tests methods to account for such omitted processes using one national-scale hydrologic model. Two bias correction methods, Flow Duration Curve (FDC) and Auto-Regressive Integrated Moving Average (ARIMA), are tested on streamflow simulated by the US Geological Survey National Hydrologic Model (NHM-PRMS), which omits irrigation pumping. A semi-arid agricultural case study is used. FDC and ARIMA perform better for correcting low and high flows, respectively. A hybrid method performs well at both low and high flows; typical Nash-Sutcliffe values increased from <-1.00 to about 0.75. Results suggest methods with which national-scale hydrologic models can be bias-corrected for omitted processes to improve regional streamflow estimates. Utility of these correction methods in simulation of future projections is discussed.more » « less
An official website of the United States government

